共查询到20条相似文献,搜索用时 15 毫秒
1.
The classical motion of an electron in the Coulomb field of an ion and in a uniform external electric field is analyzed. A nondimensionalization method that makes it possible to study electron motion in arbitrarily strong electric fields is proposed. The possible electron trajectories in the plane of motion in a static field are classified. It is noted that, from a practical standpoint, the most interesting trajectories are snakelike trajectories, which are absent in the problem with a weak external field. An adiabatic approximation for transverse electron motions in quasistatic (strong) fields is constructed. A one-dimensional equation of motion is derived that accounts for transverse electron oscillations and the increase in the effective electron mass as an electron approaches an ion. An analytic model is used to calculate the spectra of bremsstrahlung generated by individual electrons. The calculated results are shown to agree well with the results of direct numerical integration of the basic equations. It is predicted that, at frequencies higher than the frequency of the incident light, pronounced peaks can appear in the spectrum of the transverse dipole moment of an electron; as a result, an electron is expected to effectively emit radiation at these frequencies in the direction of the external field. 相似文献
2.
Slow electromagnetic solitons in electron-ion plasmas 总被引:1,自引:0,他引:1
A set of nonlinear differential equations that describe moving relativistic solitons is investigated analytically and solved numerically. The influence of the ion motion on the soliton structure is investigated. It is demonstrated that, depending on the propagation velocity, relativistic solitary waves can occur in the form of bright solitons, dark solitons, or collisionless electromagnetic shock waves. In the limit of a low propagation velocity, a dark soliton can trap the ions and accelerate them. In the case of a bright soliton, the effects of ion dynamics limit the soliton amplitude. The constraint on the maximum amplitude is related to either the breaking of ion motion or the intersection of electron trajectories. The soliton breaking provides a new mechanism for ion and electron acceleration in the interaction of high-intensity laser pulses with plasmas. 相似文献
3.
The quantum problem of electron-ion scattering in strong electromagnetic fields is studied by numerical simulations. The scattering characteristics are found to agree well with those earlier obtained in the classical limit. The simulations demonstrate the bunching of electrons during electron-ion collisions, which indicates the possibility of generation of attosecond pulses in strong fields. 相似文献
4.
This study investigated the biological effects of alternating electromagnetic fields (EMFs) on developmental stages of Drosophila melanogaster eggs and the first, second and third instar larvae stages. D. melanogaster eggs and larval stages were exposed to a 11 mT 50 Hz field produced by a pair of Helmholtz coils. Each stage was exposed to aEMFs for 2, 4, 6 and 8 h. Features of adult flies such as head, thorax, abdomen and other morphological changes were studied and compared. The frequency of abnormal flies was calculated using statistical methods at P <.05. The results obtained from exposing larvae in different stages of development showed a significant increase in the number of abnormal adult flies, whereas no significant increase was observed in the group arising from eggs exposed to aEMFs. Also, it appeared that duration of exposure correlates with the increase in the number of abnormal flies. There was no significant difference in mortality rate and sex distribution of the abnormal flies between field exposed and the control groups. 相似文献
5.
Rotation of “lone” cells of the baker's yeastSaccharomyces cerevisiae under the influence of nonuniform alternating fields is studied. The spinning rate of the cells shows a quadratic dependence on the applied voltage and no threshold effect when the influence of gravitation is cancelled out by adjusting the density of the buffer to that of the cells. These observations are in agreement with theories established by different authors. 相似文献
6.
7.
8.
Sol M. Michaelson 《Bioelectromagnetics》1982,3(1):91-103
Electromagnetic fields have been demonstrated to elicit thermoregulatory responses, neuroen-docrine, neurochemical modulations, and behavioral reactions. These physiologic regulatory processes are exquisitely tuned, interrelated functions that constitute sensitive indicators of organismic responses to radiofrequency energy absorption (the radio frequency portion of the electromagnetic spectrum includes as one part microwaves). Assessment of the integration and correlation of these functions relative to the thermal inputs and homeokinetic reactions of the individual subjected to radiofrequency energy should permit differentiation between potential hazards that might compromise the individual's ability to maintain normal physiologic function and effects that are compensated by physiologic redundancy. 相似文献
9.
A. A. Balakin 《Plasma Physics Reports》2008,34(4):296-305
Electron-ion collisions in relativistically strong electromagnetic fields are considered. Analytical and numerical analyses both show that all qualitative effects characteristic of collisions in nonrelativistic strong fields [1–3] occur at relativistic intensities of an electromagnetic wave as well. Expressions for Joule plasma heating and for the energy distributions of fast particles are derived from simple analytic considerations and are confirmed by numerical simulations. It is found, in particular, that, due to the relativistic increase in the mass of a scattered electron, Joule heating in ultrarelativistic fields becomes more intense as the field amplitude grows. 相似文献
10.
W. Ross Adey 《Journal of cellular biochemistry》1993,51(4):410-416
Life on earth has evolved in a sea of natural electromagnetic (EM) fields. Over the past century, this natural environment has sharply changed with introduction of a vast and growing spectrum of man-made EM fields. From models based on equilibrium thermodynamics and thermal effects, these fields were initially considered too weak to interact with biomolecular systems, and thus incapable of influencing physiological functions. Laboratory studies have tested a spectrum of EM fields for bioeffects at cell and molecular levels, focusing on exposures at athermal levels. A clear emergent conclusion is that many observed interactions are not based on tissue heating. Modulation of cell surface chemical events by weak EM fields indicates a major amplification of initial weak triggers associated with binding of hormones, antibodies, and neurotransmitters to their specific binding sites. Calcium ions play a key role in this amplification. These studies support new concepts of communication between cells across the barriers of cell membranes; and point with increasing certainty to an essential physical organization in living matter, at a far finer level than the structural and functional image defined in the chemistry of molecules. New collaborations between physical and biological scientists define common goals, seeking solutions to the physical nature of matter through a strong focus on biological matter. The evidence indicates mediation by highly nonlinear, nonequilibrium processes at critical steps in signal coupling across cell membranes. There is increasing evidence that these events relate to quantum states and resonant responses in biomolecular systems, and not to equilibrium thermodynamics associated with thermal energy exchanges and tissue heating. 相似文献
11.
C. Andrew L. Bassett 《Journal of cellular biochemistry》1993,51(4):387-393
Selective control of cell function by applying specifically configured, weak, time-varying magnetic fields has added a new, exciting dimension to biology and medicine. Field parameters for therapeutic, pulsed electromagnetic field (PEMFs) were designed to induce voltages similar to those produced, normally, during dynamic mechanical deformation of connective tissues. As a result, a wide variety of challenging musculoskeletal disorders have been treated successfully over the past two decades. More than a quarter million patients with chronically ununited fractures have benefitted, worldwide, from this surgically non-invasive method, without risk, discomfort, or the high costs of operative repair. Many of the athermal bioresponses, at the cellular and subcellular levels, have been identified and found appropriate to correct or modify the pathologic processes for which PEMFs have been used. Not only is efficacy supported by these basic studies but by a number of double-blind trials. As understanding of mechanisms expands, specific requirements for field energetics are being defined and the range of treatable ills broadened. These include nerve regeneration, wound healing, graft behavior, diabetes, and myocardial and cerebral ischemia (heart attack and stroke), among other conditions. Preliminary data even suggest possible benefits in controlling malignancy. 相似文献
12.
Cellular effects of electromagnetic fields 总被引:3,自引:0,他引:3
Studies at the cellular level are needed to reveal the cellular and molecular biological mechanisms underlying the biological effects and possible health implications of non-ionising radiation, such as extremely low frequency (ELF) magnetic fields (MFs) and radiofrequency (RF) fields. Our research group has studied the effects of 50 Hz ELF MFs (caused by power lines and electric devices) and 872 MHz or 900 MHz RFs (emitted by mobile phones and their base stations) on cellular ornithine decarboxylase activity, cell cycle kinetics, cell proliferation, and necrotic or apoptotic cell death. For RFs, pulse-modulated (217 Hz modulation frequency corresponding a global system for mobile communication-type signal) or continuous wave (unmodulated) signals were used. To expose the cell cultures to MFs or RFs, specially developed exposure systems were used, where levels of electromagnetic field exposure and the conditions of cell culture could be precisely controlled. A coexposure approach was used in many studies, i.e. the cell cultures were exposed to other stressors in addition to MFs or RFs. Ultraviolet radiation, serum deprivation, or fresh medium addition, were used as co-exposures. The results presented in this short review show that the effects of mere MFs or RF on cell culture models are quite minor, but that various co-exposure approaches warrant additional study. 相似文献
13.
Radu M Ionescu M Irimescu N Iliescu K Pologea-Moraru R Kovacs E 《Biophysical journal》2005,89(5):3548-3554
In alternating electric (AC) fields, particles experience polarizing effects that induce dipoles that orient elongated specimens either parallel or perpendicular to the field lines. In this work we studied the behavior of photoreceptor cells' rod outer segments (ROS) in AC fields of different frequencies. We showed that at low frequencies, ROS orient parallel to the field, whereas at higher frequencies they orient perpendicular to the field lines (in the frequency range from 100 Hz to 10 MHz). We found this behavior to be dependent on the physiological state of cells (due to modifications in their electrical properties). To simulate cell damage, the membrane conductivity was changed by treating the cell with gramicidin A, which resulted in a decrease of cytosol conductivity and, consequently, in a change of the orientation behavior of the treated cells. The change of cell orientation with cytosol conductivity is rather sharp, suggesting the potential of the method for accurate evaluation of the cell physiological status. We modeled the interaction between ROS and AC fields approximating the rod cell by a prolate spheroid with a very long axis. The internal compartment of the ellipsoid was considered to be filled with an inhomogeneous medium consisting of alternating layers of membrane and cytoplasm as media modeling the disks. This theoretical model proved to be in good agreement with the experimental results and enabled the derivation (by fitting with the experimental results) of the membrane and cytosol parameters for normal and damaged cells. 相似文献
14.
Membrane potentials induced by external alternating fields are usually derived assuming that the membrane is insulating, that the cell has no surface conductance, and that the potentials are everywhere solutions of the Laplace equation. This traditional approach is reexamined taking into account membrane conductance, surface admittance, and space charge effects. We find that whenever the conductivity of the medium outside the cell is low, large corrections are needed. Thus, in most of the cases where cells are manipulated by external fields (pore formation, cell fusion, cell rotation, dielectrophoresis) the field applied to the cell membrane is significantly reduced, sometimes practically abolished. This could have a strong bearing on present theories of pore formation, and of the influence of weak electric fields on membranes. 相似文献
15.
D. F. Austin 《The Western journal of medicine》1992,156(5):538-539
16.
Na,K-ATPase function in alternating electric fields. 总被引:1,自引:0,他引:1
M Blank 《FASEB journal》1992,6(7):2434-2438
Alternating currents affect ion transport processes and ATP splitting through changes in the activation of the membrane Na,K-ATPase. Both processes vary with the frequency, and the effective range includes the environmental 60 Hz. ATP splitting by Na,K-ATPase suspensions decreases for the enzyme under normal conditions, with the maximum effect at 100 Hz. ATP splitting increases when the enzyme activity is lowered to less than half its optimal value by changes in temperature, ouabain concentration, etc. These observations can be explained by the effects of the ionic currents on ion binding at the enzyme activation sites. Such a mechanism could account for the effects of electromagnetic fields on cells, as the transmembrane enzyme can convey the effect of an extracellular signal into the cell via ionic fluxes, and the measured threshold field is within the range of reported biological effects. 相似文献
17.
L. Zecca C. Mantegazza V. Margonato P. Cerretelli M. Caniatti F. Piva D. Dondi N. Hagino 《Bioelectromagnetics》1998,19(1):57-66
Groups of adult male Sprague Dawley rats (64 rats each) were exposed for 8 months to electromagnetic fields (EMF) of two different field strength combinations: 5μT - 1kV/m and 100μT - 5kV/m. A third group was sham exposed. Field exposure was 8 hrs/day for 5 days/week. Blood samples were collected for hematology determinations before the onset of exposure and at 12 week intervals. At sacrifice, liver, heart, mesenteric lymph nodes, bone marrow, and testes were collected for morphology and histology assessments, while the pineal gland and brain were collected for biochemical determinations. At both field strength combinations, no pathological changes were observed in animal growth rate, in morphology and histology of the collected tissue specimens (liver, heart, mesenteric lymph nodes, testes, bone marrow), and in serum chemistry. An increase in norepinephrine levels occurred in the pineal gland of rats exposed to the higher field strength. The major changes in the brain involved the opioid system in frontal cortex, parietal cortex, and hippocampus. From the present findings it may be hypothesized that EMF may cause alteration of some brain functions. Bioelectromagnetics 19:57–66, 1998. © 1998 Wiley-Liss, Inc. 相似文献
18.
Dominance of spiral patterns in some macromolecular solutions has been studied from the point of view of the low-energy electromagnetic vortical field theory. It is proposed that the elements of patterns of folded macromolecules as dipole entities are packed with an orientation determined by a background field while still in a liquid crystalline stage. Experimental evidence is presented by the growth of polystyrene crystals and the use of electrically sensitive dye staining and optical techniques that do not influence the pattern formation. 相似文献
19.
20.
《Biochimica et Biophysica Acta (BBA)/General Subjects》2017,1861(6):1617-1641
The use of an alternating magnetic field (AMF) to generate non-invasively and spatially a localized heating from a magnetic nano-mediator has become very popular these last years to develop magnetic hyperthermia (MH) as a promising therapeutic modality already used in the clinics. AMF has become highly attractive this last decade over others radiations, as AMF allows a deeper penetration in the body and a less harmful ionizing effect. In addition to pure MH which induces tumor cell death through local T elevation, this AMF-generated magneto-thermal effect can also be exploited as a relevant external stimulus to trigger a drug release from drug-loaded magnetic nanocarriers, temporally and spatially. This review article is focused especially on this concept of AMF induced drug release, possibly combined with MH. The design of such magnetically responsive drug delivery nanoplatforms requires two key and complementary components: a magnetic mediator which collects and turns the magnetic energy into local heat, and a thermoresponsive carrier ensuring thermo-induced drug release, as a consequence of magnetic stimulus. A wide panel of magnetic nanomaterials/chemistries and processes are currently developed to achieve such nanoplatforms. This review article presents a broad overview about the fundamental concepts of drug releasing nanoplatforms activated by AMF, their formulations, and their efficiency in vitro and in vivo. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editors: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader. 相似文献