首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of BrdU incorporation on cell radiosensitivity as well as on the induction of chromosome damage by radiation was studied in plateau-phase xrs-5 cells using the premature chromosome condensation (PCC) method. It is well known that xrs-5 cells are sensitive to ionizing radiation and defective in the repair of radiation-induced DNA double-strand breaks, chromosome damage, and potentially lethal damage (PLD). Compared to repair-proficient CHO 10B cells, a reduction was observed in the overall BrdU-mediated radiosensitization in plateau-phase xrs-5 cells for the same degree of thymidine replacement. This finding is interpreted with a model for BrdU-induced radiosensitization advanced previously, in which two distinct components act to produce the overall radiosensitization observed. One component involves processes associated with the increase in initial damage (DNA and chromosome) production per unit absorbed dose and causes an increase in the slope of the survival curve, while the second component involves enhanced fixation of radiation-induced damage (PLD) and causes a reduction in the width of the shoulder of the survival curve. It is suggested that in plateau-phase xrs-5 cells, the deficiency in the repair of radiation-induced damage compromises BrdU-mediated radiosensitization by leaving active only the radiosensitization component that is associated with an increase in damage induction. Enhancement of cell killing by BrdU in plateau-phase xrs-5 cells resulted in a decrease in D0, the relative value of which was similar to the relative increase in the production of chromosome damage as measured by the PCC method. The relative values for the change in D0 and the production of chromosome aberrations were similar in plateau-phase CHO 10B and xrs-5 cells, suggesting that the physicochemical and/or biochemical processes associated with this phenomenon are the same in the two cell lines. Radiosensitization of a magnitude similar to that observed in exponentially growing CHO 10B cells was induced by BrdU in exponentially growing xrs-5 cells. This effect is attributed to a partial expression of the repair gene (transiently during S phase in all cells, or throughout the cycle in a fraction of cells) that permits some repair of radiation-induced damage and which is compromised by BrdU.  相似文献   

2.
The effect of the DNA polymerase inhibitor beta-arabinofuranosyladenine (araA) on radiation-induced damage was studied at the cell survival and chromosome level in unfed plateau-phase cultures of Chinese hamster ovary cells. At the cell survival level postirradiation treatment with araA fixed a form of radiation-induced potentially lethal damage, termed alpha-PLD. In the absence of araA treatment, repair of PLD resulted in the formation of the survival curve shoulder in immediately plated cells and in the increase in survival observed after delayed plating. The repair kinetics observed after delayed plating of plateau-phase cells or after delayed administration of 500 microM araA were similar, suggesting that both protocols assay similar lesions. AraA-mediated fixation reached a plateau at concentrations higher than 500 microM, indicating complete fixation of alpha-PLD. At the cytogenetic level, postirradiation treatment with araA at concentrations higher than 500 microM caused a complete inhibition of chromosome repair, as scored by premature chromosome condensation. In the absence of araA, the linearity of the dose-effect relationship for chromosome fragmentation obtained immediately after irradiation was preserved even after long repair times. The repair kinetics of chromosome damage measured in cells held postirradiation in the plateau phase were the mirror image of the repair kinetics for alpha-PLD. The half-time was 1 h in both cases and repair reached a plateau after about 4-6 h. AraA-mediated repair inhibition of chromosome damage was reversible, and a decrease in residual chromosome damage was observed after post-treatment incubation in araA-free conditioned medium. This persistent chromosome damage increased with increasing araA concentration and, as with PLD fixation, reached a plateau at about 500 microM. These results suggest that repair and araA-mediated fixation of alpha-PLD have their counterparts at the chromosome level as indicated by the similar repair kinetics and inhibition/fixation characteristics obtained for alpha-PLD and chromosome damage. This relationship implies a correlation between repair at the DNA and the chromosome level and suggests that DNA polymerization is required for the repair of chromosome damage.  相似文献   

3.
There is evidence suggesting that radiosensitization induced in mammalian cells by substitution in the DNA of thymidine with BrdU has a component that relies on inhibition of repair and/or fixation of radiation damage. Here, experiments designed to study the mechanism of this phenomenon are described. The effect of BrdU incorporation into DNA was studied on cellular repair capability, rejoining of interphase chromosome breaks, as well as induction and rejoining of DNA double- and single-stranded breaks (DSBs and SSBs) in plateau-phase CHO cells exposed to X rays. Repair of potentially lethal damage (PLD), as measured by delayed plating of plateau-phase cells, was used to assay cellular repair capacity. Rejoining of interphase chromosome breaks was assayed by means of premature chromosome condensation (PCC); induction and rejoining of DNA DSBs were assayed by pulsed-field gel electrophoresis and induction and rejoining of DNA SSBs by DNA unwinding. A decrease was observed in the rate of repair of PLD in cells grown in the presence of BrdU, the magnitude of which depended upon the degree of thymidine replacement. The relative increase in survival caused by PLD repair was larger in cells substituted with BrdU and led to a partial loss of the radiosensitizing effect compared to cells tested immediately after irradiation. A decrease was also observed in the rate of rejoining of interphase chromosome breaks as well as in the rate of rejoining of the slow component of DNA DSBs in cells substituted with BrdU. The time constants measured for the rejoining of the slow component of DNA DSBs and of interphase chromosome breaks were similar both in the presence and in the absence of BrdU, suggesting a correlation between this subset of DNA lesions and interphase chromosome breaks. It is proposed that a larger proportion of radiation-induced potentially lethal lesions becomes lethal in cells grown in the presence of BrdU. Potentially lethal lesions are fixed via interaction with processes associated with cell cycle progression in cells plated immediately after irradiation, but can be partly repaired in cells kept in the plateau-phase. It is hypothesized that fixation of PLD is caused by alterations in chromatin conformation that occur during normal progression of cells throughout the cell cycle.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The purpose of this study was to investigate possible involvement of poly(ADP-ribosyl)ation reactions in X-ray-induced cell killing, repair of potentially lethal damage (PLD), and formation and repair of radiation-induced DNA damage. As tools we used the inhibitors of poly(ADP-ribose)polymerase, 3-aminobenzamide (3AB), and 4-aminobenzamide (4AB). Both drugs inhibited PLD repair equally well but did not increase radiation-induced cell killing when cells were plated immediately after irradiation. 3AB affected repair of radiation-induced DNA damage, while 4AB had no effect. When 3AB was combined with aphidicolin (APC), it was found that the amount of DNA damage increased during the postirradiation incubation period. This means that the presence of 3AB stimulates the formation of DNA damage after X-irradiation. It is concluded that 3AB and 4AB sensitize HeLaS3 cells for radiation-induced cell killing by inhibiting repair of PLD. Because of the different effects of both inhibitors on repair of PLD and repair of radiation-induced DNA damage (a process known to be affected by inhibition of poly(ADP-ribosyl)ation), it is concluded that the observed inhibition of PLD repair is not caused by inhibition of poly(ADP-ribose)polymerase, and that the inhibitors affect repair of PLD and repair of DNA damage through independent mechanisms.  相似文献   

5.
The neutral (pH 9.6) filter elution technique was used to evaluate DNA damage induced in CHO cells irradiated at mitosis or in G1-phase under various incubation and postirradiation treatment conditions. Mitotic and G1/S border cells were more sensitive to radiation than G1 cells with respect to cell killing, but showed similar (G1/S) or lower (M) DNA elution dose--response curves. Similar cell survival and DNA/elution dose--response curves were obtained with plateau-phase cultures containing mainly G1-cells, as well as with G1 cells obtained after division of mitotic cells in either fresh or conditioned medium. However, survival of plateau-phase cells could be modified substantially by delayed-plating or postirradiation treatment with araA. These results, together with previously published observations, indicate that induction of DNA dsb cannot be invoked as an explanation for the variations in radiosensitivity observed through the cycle, or as an explanation for the formation of the survival curve shoulder. It is proposed that repair and fixation of radiation-induced DNA damage, expressed at the cell survival level as repair and fixation of alpha-PLD, are responsible for these effects.  相似文献   

6.
Summary OH mouse 10 T1/2 cells showing strong inhibition of growth at confluency were grown under daily refeeding in the presence of BrdUrd (from 0 to 1 µM) and exposed to-rays either while exponentially growing or in the plateau phase. An increase in radiosensitivity was observed in both growth conditions mainly reflected by a reduction in Dq. Greater radiosensitization was observed in exponentially growing than in plateau-phase cells, and 3–4 times higher BrdUrd concentrations were required in plateau-phase cells for similar potentiation in killing. This effect could not be entirely attributed to a reduction in BrdUrd incorporation since measurements with3H-BrdUrd showed reductions in incorporation between only 17–47% in plateau-phase cells. The rate of repair of potentially lethal damage (PLD) as demonstrated by delayed plating was not affected by the incorporation of BrdUrd, but the amount of repair (measured as the relative increase in cell survival) was higher for BrdUrd-containing cells. Post-irradiation treatment of cells in the plateau-phase (no BrdUrd) with 9--d-arabinofuranosyladenine (araA) caused fixation of radiation-induced PLD. AraA treatment of cells grown in the presence of various amounts of BrdUrd also caused fixation of PLD, but resulted in survival levels similar to those observed with cells growing in BrdUrd-free medium. This result indicates that BrdUrd mediated radiosensitization cannot be observed when cells are prevented from repairing PLD by postirradiation incubation with araA. Based on these findings we propose that the mechanism of radiosensitization by BrdUrd incorporation might be, by increasing probability of fixation, mediated by the postirradiation progression of cells through the cycle, of a sector of PLD also sensitive to post-irradiation treatment with araA. For this sector of PLD the term -PLD has been proposed.This investigation was partly supported by PHS grants CA33951, CA39938 and CA42026 awarded by NCI, DHHS  相似文献   

7.
Expotentially growing and plateau-phase V79 cells were exposed to various doses of neutrons and plated either immediately or after treatment in hypertonic medium (250-500 mM NaCl) to express radiation-induced potentially lethal damage (PLD). Postirradiation treatment of exponentially growing cells in hypertonic medium (500 mM) resulted in a decrease in both Dq and D0, whereas postirradiation treatment of plateau-phase cells in hypertonic medium (in the range between 200 to 1,500 mM) resulted mainly in a reduction of Dq. This difference in response between exponentially growing and plateau-phase cells may reflect differences in the chromatin structure in cells at various stages of the cell cycle, affecting fixation of radiation-induced damage. Exposure of plateau-phase cells to gamma rays, on the other hand, resulted in a treatment time and salt concentration-dependent decrease in Dq along with a decrease in D0. Repair of neutron-induced, hypertonic treatment-sensitive PLD, measured by delaying treatment for various periods after irradiation, was found to proceed with a t1/2 of about 1 h. This is similar to the repair kinetics obtained by delaying treatment of plateau-phase cells with 150 microM beta-D-arabinofuranosyladenine (araA) after exposure to gamma rays or neutrons and contrasts the repair kinetics observed after exposure of cells to gamma rays. In this case, hypertonic treatment was found to affect a form of PLD repaired with a t1/2 of 10-15 min (beta-PLD) and araA, a different form of PLD, repaired with a t1/2 of about 1 h (alpha-PLD). Based on these results it is hypothesized that the sector of lesions affected by hypertonic treatment and araA coincides after exposure to neutrons (effect on alpha-PLD) but only partly overlaps after exposure to gamma rays (due to the effect on beta-PLD of hypertonic treatment). The results presented, together with previously published observations, suggest a differential induction and/or fixation by hypertonic medium of the alpha- and beta-PLD forms as the LET of the radiation increases. Furthermore, they indicate that direct comparison of the effects of a postirradiation treatment, as well as of the repair kinetics obtained by its delayed application after exposure to radiations of various LET, should be made with caution.  相似文献   

8.
Plateau-phase Chinese V79 hamster cells were sequentially treated after exposure to gamma rays in medium made hypertonic by the addition of sodium chloride (370 mM) and with various concentrations of 9-beta-D-arabinofuranosyladenine (araA) to study their combined effect on fixation of potentially lethal damage (PLD). A 10-min treatment in hypertonic medium fixed an extensive amount of PLD and caused a decrease in D0 from 1.8 to 1.2 Gy without significantly affecting Dq. Subsequent treatment with araA caused further fixation of PLD but resulted in a specific, concentration-dependent reduction in Dq from 4.9 to 1.6 Gy after a 4-h exposure to 150 microM araA. A 30-min treatment in hypertonic medium reduced not only Do (from 1.8 to 1.0 Gy) but also Dq (from 4.9 to 2.7 Gy). Subsequent treatment with araA in this case affected only the residual shoulder, reducing it to 1.6 Gy after a 4-h treatment with 100 microM araA, a value similar to that obtained after treatment with araA of cells exposed to salt for only 10 min. When the repair of PLD fixed by a 10-min treatment with salt was measured by delaying its postirradiation application in the presence of various amounts of araA, a small decrease in the repair rate was observed but no significant effect on the relative increase in survival. Qualitatively similar results were obtained for repair of PLD sensitive to araA after a 10-min treatment in hypertonic medium. These results suggest the radiation induction of forms of PLD with different sensitivity to fixation by postirradiation treatments. araA is proposed to fix a form of PLD termed alpha-PLD, the repair of which takes place within 4-6 h and which causes the formation of the shoulder in the survival curve of cells plated immediately after irradiation. Short treatments in hypertonic medium (less than 10 min) are proposed to fix a form of PLD termed beta-PLD, the repair of which takes place within 1 h and leads to restoration of the slope to values equal to those obtained in the survival curve of cells plated immediately after irradiation. However, longer treatments in hypertonic medium also affect Dq and thus also alpha-PLD. Repair of beta-PLD was not significantly affected by araA and repair of alpha-PLD was not significantly affected by short hypertonic treatment, thus indicating the independence of the two forms of PLD.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
HeLa S3 cells were sensitized to the lethal action of 220-kV X rays by partially replacing the thymidine in their DNA with 5-bromodeoxyuridine (BrdU). To examine the expression of and recovery from potentially lethal radiation damage (PLD), both BrdU-grown and control cells were treated with 4 mM caffeine for increasing times up to 2 days, either immediately after irradiation or after increasing delays up to 28 h. When the same dose of X rays (3 Gy) was applied to BrdU-grown and control cells, the difference in survival that is found in the absence of caffeine disappeared after about 30 h of incubation in its presence; when isosurvival doses were applied (BrdU-grown cells, 2.5 Gy; control cells, 4 Gy), the control cells suffered more killing. When treatment with caffeine was delayed for progressively longer times after both groups of cells received 3 Gy, the control cells achieved a higher level of survival. These results indicate that the increased radiation sensitivity of cells containing BrdU derives from a decreased ability to repair PLD.  相似文献   

10.
Selective inhibition of the epidermal growth factor receptor or mitogen-activated protein kinase (MAPK) results in radiosensitization of cancer cells. One potential mechanism involves cAMP-responsive element-binding protein, which is activated by radiation via the epidermal growth factor receptor/MAPK pathway and which regulates synthesis of proliferating cell nuclear antigen (PCNA), a protein involved in repair of ionizing radiation-induced DNA damage. To test for a role of CREB in cellular radiosensitivity, CHO cells were transfected with plasmids expressing dominant-negative CREB mutants (CR133 or KCREB), and various end-points were measured 48 h later. Basal levels of PCNA-CAT reporter construct activity were reduced by 60 and 40% following expression of CR133 and KCREB, respectively; similar decreases were observed in PCNA protein levels. Pulsed-field gel electrophoresis measurements showed that CR133 inhibited the repair of radiation-induced DNA double-strand breaks, and this effect was reversed by over-expression of PCNA; dominant-negative CREB also significantly inhibited split-dose recovery. Clonogenic assays were used to determine surviving fraction; the dose enhancement ratios for dominant-negative CREB-expressing cells compared with control (vector alone) were 1.5 and 1.3 for CR133 and KCREB, respectively. Importantly, co-transfection of mutant CREB and a construct constitutively expressing PCNA protein restored radiosensitivity of CHO cells back to wild-type levels. Moreover, cells expressing either CREB mutant showed no significant cell cycle redistribution. These data demonstrate that genetic disruption of CREB results in radiosensitization, and that this effect can be explained by a mechanism involving decreased PCNA expression and inhibition of DNA repair.  相似文献   

11.
Effects of an antifungal antibiotic, Leptomycin B (LMB), on X-ray cell killing were studied using cultured mammalian cells (BHK21). LMB at concentrations from 0.05 to 2 ng/ml inhibited cell proliferation but enhanced cell killing without significant cytotoxic effect when added to cell cultures pre- and postirradiation. The degree of enhanced cell killing decreased as the interval between irradiation and LMB treatment was prolonged. Enhancement of cell killing was probably due to fixation of potentially lethal damage (PLD) to LMB. Radioresistant S-phase cells were more sensitive to LMB-induced PLD fixation than G1-phase cells. Furthermore, a preliminary study showed that LMB not only inhibited the repair of PLD which was induced by conditioned medium but also inhibited splitdose repair of sublethal damage. Although the target molecule of LMB has not been identified, we suggest that LMB inhibits repair processes by altering the structure of the nuclear scaffold, which is supposed to be a radiosensitive site.  相似文献   

12.
Wang X  Wang H  Iliakis G  Wang Y 《Radiation research》2003,159(3):426-432
After exposure to ionizing radiation, proliferating cells actively slow down progression through the cell cycle through the activation of checkpoints to provide time for repair. Two major complementary DNA double-strand break (DSB) repair pathways exist in mammalian cells, homologous recombination repair (HRR) and nonhomologous end joining (NHEJ). The relationship between checkpoint activation and these two types of DNA DSB repair pathways is not clear. Caffeine, as a nonspecific inhibitor of ATM and ATR, abolishes multi-checkpoint responses and sensitizes cells to radiation-induced killing. However, it remains unknown which DNA repair process, NHEJ or HRR, or both, is affected by caffeine-abolished checkpoint responses. We report here that caffeine abolishes the radiation-induced G(2)-phase checkpoint and efficiently sensitizes both NHEJ-proficient and NHEJ-deficient mammalian cells to radiation-induced killing without affecting NHEJ. Our results indicate that caffeine-induced radiosensitization occurs by affecting an NHEJ-independent process, possibly HRR.  相似文献   

13.
The ability of Ehrlich ascites tumor cells (EAT cells) to repair potentially lethal damage (alpha-PLD) as demonstrated by either an increase in survival after delayed plating or a decrease in survival after treatment with beta-arabinofuranosyladenine (beta-araA) was investigated after exposure to protons, deuterons, 3He, 4He, and heavy ions of various specific energies. A significant amount of repair or fixation was observed after delayed plating or treatment with beta-araA, respectively, in cells that were exposed to protons of 6-21 MeV energy, reflecting mainly variations in the survival curve shoulder width. Four-hour treatment with 80 microM/liter beta-araA resulted in an exponential survival curve for all proton energies tested. A decrease in particle energy increased killing and caused a reduction in Dq without a significant change in D0. The survival curve obtained after exposure of cells to 3.4 MeV protons had only a small shoulder and was only slightly modified by either delayed plating or treatment with beta-araA, suggesting a decrease in the induction rate of alpha-PLD. Similar results were also obtained after exposure to deuterons and 4He ions. The results are interpreted as indicating the importance of the specific particle energy and the delta-electron spectrum in the induction of alpha-PLD. When the results of delayed plating of cells exposed to protons, deuterons, or helium ions were pooled, an exponential relationship between Dq and penumbra radius was indicated. After exposure to 40Ar ions of 18 MeV specific energy, a shouldered survival curve was obtained, and beta-araA significantly enhanced killing by modifying Dq as well as D0, a result that also suggests induction of repairable damage by the delta particles produced and interaction of lesions induced within the core of the ion path with penumbra lesions. Based on these results a model is proposed assuming that alpha-PLD results from interaction, during the course of repair, of pairs of DNA lesions induced within a distance di. The model assumes the existence of a critical separation distance dic, with the property that pairs of lesions induced with separation distance shorter than dic (expressed as number of base pairs) will always be expressed as lethal, and the existence of a maximum separation distance dim, with the property that pairs of lesions induced with separation distance larger than dim will not interact.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The effect of BrdU incorporation on cell radiosensitivity as well as on the induction of DNA double-strand breaks (DSB) and chromosome damage by radiation was studied in CHO cells. Induction of DNA DSB was measured by the nonunwinding filter elution technique and damage at the chromosome level was visualized and scored in G1 cells using the technique of premature chromosome condensation. The results indicated an increase in the radiosensitivity of cells grown in the presence of BrdU. Although sensitization was observed both in cells irradiated in the exponential phase and in cells irradiated in the plateau phase of growth, the degree of sensitization was greater in exponentially growing cells for the same degree of thymidine replacement by BrdU in the DNA. It is hypothesized that this indicates the possible importance of chromatin structure at the time of irradiation and/or the importance of chromatin conformation changes after irradiation in the expression of radiation-induced potentially lethal damage in cells containing BrdU. Incorporation of BrdU affected both the slope and the width of the shoulder of the survival curve and increased the induction of DNA and chromosome damage per unit absorbed dose. The increase observed in the slope of the survival curve was quantitatively similar to the increase observed in damage induction at the DNA and the chromosome level, suggesting a cause-effect relationship between these phenomena. Reduction in the width of the shoulder did not correlate with the increase in the induction of DNA and chromosome damage, suggesting that different phenomena, probably related to enhanced fixation of radiation-induced potentially lethal damage in cells containing BrdU, underlie its modulation.  相似文献   

15.
The effect of anisotonic NaCl treatment on fixation and repair of radiation-induced potentially lethal damage (PLD) was tested in normal human cells and in three homozygous ataxia-telangiectasia (A-T) and two heterozygous A-T cell strains. Fixation of radiation-induced PLD occurred in all cell strains exposed to 0.05, 0.5, or 1.5 mole/liter NaCl solutions immediately after irradiation. This effect was observed in both plateau-phase and exponentially growing normal and A-T cells. When an incubation period at 37 degrees C was introduced between irradiation and the subsequent anisotonic treatment, recovery was observed in both normal and A-T cells strains. These data show that A-T cells are as proficient as normal cells in repairing PLD that is sensitive to anisotonic NaCl treatment. It is proposed that two PLD repair systems may exist, one that is expressed after irradiation in proliferatively arrested cells and another that occurs in plateau-phase as well as exponentially growing cells, and is expressed by the postirradiation treatments described here and by Raaphorst and Azzam (Radiat. Res. 86, 52-66 (1981].  相似文献   

16.
C3H10T1/2 mouse embryo cells exhibiting strong contact inhibition of growth at confluency were grown in the presence of 5-bromodeoxyuridine (BrdUrd) or 5-iododeoxyuridine (IdUrd) (0-1.2 microM) with daily refeeding and exposed to gamma-rays (6 Gy) either in the logarithmic or the plateau phase of growth. Sensitization to radiation was observed in both growth states with increasing concentration of BrdUrd or IdUrd but the degree of sensitization achieved was lower for plateau-phase cells. Because the degree of [H3]BrdUrd incorporation was found to be similar in exponentially growing and plateau-phase cells, it is hypothesized that the radiosensitization caused by pyrimidine analogues may be affected by the physiological state of the cells at the time of irradiation. Delayed plating of plateau-phase cells (6 h) caused an increase in survival, indicating repair of potentially lethal damage (PLD). A greater increase in cell survival was observed in cells that had been grown in the presence of BrdUrd and IdUrd and it was found to increase with increasing concentrations. This analogue-concentration dependent PLD repair activity resulted in an almost complete loss of the radiosensitizing effect in delayed plated plateau-phase cells up to a concentration of about 0.6 microM of BrdUrd and IdUrd. Both compounds, but especially BrdUrd, caused a relaxation in the mechanism of contact inhibition and led to higher cell densities in the plateau phase. The results suggest that repair and/or expression of PLD might be involved in the mechanism underlying BrdUrd and IdUrd-mediated radiosensitization and point out the potential importance of PLD repair in the modulation of the radiosensitizing effect of these compounds in their clinical application.  相似文献   

17.
The various postirradiation incubation conditions reported to uncover potentially lethal damage (PLD) induced by ionizing radiation are outlined and critically discussed. The process of damage fixation is the most characteristic determinant in distinguishing between PLD and other forms of damage (lethal or non-lethal). The results compiled indicate the induction of two forms of PLD (termed alpha- and beta-PLD). Evidence is presented that repair and fixation of alpha-PLD may underlie the variation in radiosensitivity observed through the cycle. Beta-PLD appears to be sensitive only to postirradiation treatment in anisotonic sale solutions. Results obtained at the DNA and chromosome level, under conditions allowing repair or causing fixation of PLD, are reviewed and combined together to devise a qualitative model that outlines a possible sequence of events from damage fixation at the DNA level, to damage fixation at the chromosome level and, ultimately, to cell death. It is suggested that damage uncovered at the cellular level as potentially lethal, comprises DNA dsb (single, pairs or groups) and that fixation is mediated by forces transmitted to the double helix through alteration (local or general) in chromatin conformation. Changes in chromatin conformation are caused either as a result of the cell's progression through the cycle or in response to a postirradiation treatment. The fixation process leads to the induction of chromosome aberrations. The validity of the concept of PLD in in vivo systems is shown, and the possible importance of PLD repair in radiation therapy is reviewed. The concept of PLD is compared to the concept of sublethal damage, and the possibility that similar molecular lesions underlie both types of damage is discussed.  相似文献   

18.
Summary We have examined the effects of several classes of metabolic inhibitors on the repair of potentially lethal damage in density-inhibited cultures of two rodent and two human cell systems which differ in their growth characteristics. Aphidicolin, 1--d-arabinofuranosylcytosine (ara-C) and hydroxyurea showed no effect on PLD repair, whereas the effects of 9--d-arabinofuranosyladenine (ara-A) and 3-aminobenzamide (3-AB) were cell line dependent. For example, 3-AB suppressed PLD repair almost completely in CHO cells, but showed no inhibitory effects in human diploid fibroblasts. These results indicate that inhibitors of DNA replication and poly(ADP-ribose) synthesis are not efficient inhibitors of cellular recovery in irradiated cells and, moreover, that such effects may be cell line dependent.  相似文献   

19.
Bromodeoxyuridine (BrdU) competes with thymidine (TdR) for incorporation into DNA of exponentially growing V79-171 cells. Such cells show an enhancement of the radiation response as determined by clonogenic survival and DNA damage measured by filter elution techniques after doses up to 15 Gy. The degree of radiosensitization for both survival and rates of alkaline and neutral elution are dependent on percentage BrdU substitution and independent of whether BrdU is in one strand only (monofilar) or both strands (bifilar) of the DNA duplex: e.g., for 16% BrdU substitution distributed either monofilarly or partially bifilarly, there is an enhancement factor for Do of 1.55. At this percentage substitution, the enhancement factor for the rate of alkaline elution is 1.75 and that for the rate of neutral elution is 1.54. The greater the percentage BrdU substitution, the larger was the enhancement ratio for survival and radiation-induced strand breaks in both monofilarly and bifilarly substituted cells. The increase in cell radiosensitivity caused by BrdU substitution shows a better correlation with the increase in radiation-induced double-strand breaks than with the increase in radiation-induced single-strand breaks.  相似文献   

20.
Summary The relationship between the inhibition of repair of radiation-induced DNA damage and the inhibition of recovery from radiation-induced potentially lethal damage (PLD) by hypertonic treatment was compared in 9L/Ro rat brain tumor cells. Fed plateau phase cultures were-irradiated with 1500 rad and then immediately treated for 20 min with a 37° C isotonic (0.15 M) or hypertonic (0.50 M) salt solution. The kinetics of repair of radiation-induced DNA damage as assayed using alkaline filter elution were compared to those of recovery from radiation-induced PLD as assayed by colony formation. Hypertonic treatment of unirradiated cells produced neither DNA damage nor cell kill. Post-irradiation hypertonic treatment inhibited both DNA repair and PLD recovery, while post-irradiation isotonic treatment inhibited neither phenomenon. However, by 2 h after irradiation, the amount of DNA damage remaining after a 20 min hypertonic treatment was equivalent to that remaining after a 20 min isotonic treatment. In contrast, cell survival after hypertonic treatment remained 2 logs lower than after isotonic treatment even at times up to 24 h. These results suggest that the repair of radiation-induced DNA damageper se is not causally related to recovery from radiation-induced PLD. However, the data are consistent with the time of DNA repair as an important parameter in determining cell survival and, therefore, tend to support the hypothesis that imbalances in sets of competing biochemical or metabolic processes determine survival rather than the presence of a single class of unrepaired DNA lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号