首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive oxygen species (ROS) act as signaling molecules that regulate nervous system physiology. ROS have been related to neural differentiation, neuritogenesis, and programmed cell death. Nevertheless, little is known about the mechanisms involved in the regulation of ROS during neuronal development. In this study, we evaluated the mechanisms by which ROS are regulated during neuronal development and the implications of these molecules in this process. Primary cultures of cerebellar granule neurons (CGN) were used to address these issues. Our results show that during the first 3 days of CGN development in vitro (days in vitro; DIV), the levels of ROS increased, reaching a peak at 2 and 3 DIV under depolarizing (25 mM KCl) and nondepolarizing (5 mM KCl) conditions. Subsequently, under depolarizing conditions, the ROS levels markedly decreased, but in nondepolarizing conditions, the ROS levels increased gradually. This correlated with the extent of CGN maturation. Also, antioxidants and NADPH-oxidases (NOX) inhibitors reduced the expression of Tau and MAP2. On the other hand, the levels of glutathione markedly increased at 1 DIV. We inferred that the ROS increase at this time is critical for cell survival because glutathione depletion leads to axonal degeneration and CGN death only at 2 DIV. During the first 3 DIV, NOX2 was upregulated and expressed in filopodia and growth cones, which correlated with the hydrogen peroxide (H2O2) distribution in the cell. Finally, NOX2 KO CGN showed shorter neurites than wild-type CGN. Taken together, these results suggest that the regulation of ROS is critical during the early stages of CGN development.  相似文献   

2.
Wang X  Ke Z  Chen G  Xu M  Bower KA  Frank JA  Zhang Z  Shi X  Luo J 《PloS one》2012,7(5):e38075
It has been suggested that excessive reactive oxygen species (ROS) and oxidative stress play an important role in ethanol-induced damage to both the developing and mature central nervous system (CNS). The mechanisms underlying ethanol-induced neuronal ROS, however, remain unclear. In this study, we investigated the role of NADPH oxidase (NOX) in ethanol-induced ROS generation. We demonstrated that ethanol activated NOX and inhibition of NOX reduced ethanol-promoted ROS generation. Ethanol significantly increased the expression of p47(phox) and p67(phox), the essential subunits for NOX activation in cultured neuronal cells and the cerebral cortex of infant mice. Ethanol caused serine phosphorylation and membrane translocation of p47(phox) and p67(phox), which were prerequisites for NOX assembly and activation. Knocking down p47(phox) with the small interfering RNA was sufficient to attenuate ethanol-induced ROS production and ameliorate ethanol-mediated oxidative damage, which is indicated by a decrease in protein oxidation and lipid peroxidation. Ethanol activated cell division cycle 42 (Cdc42) and overexpression of a dominant negative (DN) Cdc42 abrogate ethanol-induced NOX activation and ROS generation. These results suggest that Cdc42-dependent NOX activation mediates ethanol-induced oxidative damages to neurons.  相似文献   

3.
质膜上的活性氧制造者--NOX家族   总被引:7,自引:0,他引:7  
李玲娜  周崧  易静 《生命科学》2005,17(5):414-418
NADPH氧化酶特异存在于吞噬细胞质膜,能生成用于清除病原微生物的活性氧(reactive oxygen species,ROS)。NOX是NADPH氧化酶催化亚基gp91^phox的同源物,存在于多种非吞噬细胞。目前发现的NOX有NOX1、NOX3、NOX4及NOX5,虽然它们有一定的组织特异性,但与NADPH氧化酶一样均有催化生成ROS的能力。与吞噬细胞中NADPH氧化酶所制造的ROS不同,NOX所产生的ROS并不主要起细胞防御功能,而是作为第二信使,参与细胞增殖、分化、凋亡的调节。此外,NOX对血管生成及骨吸收也有一定的影响,同时还可作为氧感受器调节促红细胞生成素(EPO)的产生。  相似文献   

4.
5.
Apoptosis linked to oxidative stress has been implicated in pancreatitis. We investigated whether NADPH oxidase mediates apoptosis in cerulein-stimulated pancreatic acinar AR42J cells. We report here that cerulein treatment resulted in the activation of NADPH oxidase, as determined by ROS production, translocation of cytosolic subunits p 47(phox) and p 67(phox) to the membrane, and interaction between NADPH oxidase subunits. Cerulein induced Ca(2+) oscillation, the expression of apoptotic genes p53 and bax, and apoptotic indices (DNA fragmentation, TUNEL staining, caspase 3 activity, decrease in cell viability) in AR42J cells. Treatment with a Ca(2+) chelator, BAPTA-AM, or transfection with antisense oligonucleotides for NADPH oxidase subunits p22(phox) and p 47(phox) inhibited cerulein-induced ROS production, translocation of NADPH oxidase cytosolic subunits p 47(phox) and p 67(phox) to the membrane, and the expression of apoptotic genes and apoptotic indices, as compared to the cells without treatment and those transfected with the corresponding sense oligonucleotides. These results indicate that NADPH oxidase may mediate ROS-induced apoptosis in pancreatic acinar cells in a Ca(2+)-dependent manner.  相似文献   

6.
NADPH氧化酶催化亚基gp91phox(NOX2)及其同源物NOX1、NOX3、NOX4、NOX5、DUOX1和DUOX2统称为NOX家族,它们作为NADPH酶的核心亚基,是该酶发挥作用的关键。NOX家族几乎存在于所有的细胞,吞噬细胞中NADPH氧化酶生成的ROS主要起细胞防御功能,与此不同的是非吞噬细胞中NADPH氧化酶产生的ROS作为信号分子,参与机体内信号转导途径,调节细胞分化、增殖、衰老和凋亡等活动;当NOX家族蛋白异常表达,ROS水平急剧增加时,则能诱导机体内多种疾病的发生。  相似文献   

7.
Reactive oxygen species (ROS) are produced in NIH3T3 fibroblasts during hypotonic stress, and H(2)O(2) potentiates the concomitant release of the organic osmolyte taurine (Lambert IH. J Membr Biol 192: 19-32, 2003). The increase in ROS production [5-(and-6)-carboxy-2', 7'-dichlorodihydrofluorescein diacetate fluorescence] is detectable after a reduction in the extracellular osmolarity from 335 mosM (isotonic) to 300 mosM and reaches a maximal value after a reduction to 260 mosM. The swelling-induced ROS production is reduced by the flavoprotein inhibitor diphenylene iodonium chloride (25 microM) but is unaffected by the nitric oxide synthase inhibitor N omega-nitro-l-arginine methyl ester, indicating that the volume-sensitive ROS production is NADPH oxidase dependent. NIH3T3 cells express the NADPH oxidase components: p22 phox, a NOX4 isotype; p47 phox; and p67 phox (real-time PCR). Exposure to the Ca2+-mobilizing agonist ATP (10 microM) potentiates the release of taurine but has no effect on ROS production under hypotonic conditions. On the other hand, addition of the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA, 100 nM) or the lipid messenger lysophosphatidic acid (LPA, 10 nM) potentiates the swelling-induced taurine release as well as the ROS production. Overexpression of Rac1 or p47 phox or p47 phox knockdown [small interfering (si)RNA] had no effect on the swelling-induced ROS production or taurine release. NOX4 knockdown (siRNA) impairs the increase in the ROS production and the concomitant taurine release following osmotic exposure. It is suggested that a NOX4 isotype plus p22 phox account for the swelling-induced increase in the ROS production in NIH3T3 cells and that the oxidase activity is potentiated by PKC and LPA but not by Ca2+.  相似文献   

8.
Reactive oxygen species (ROS) are known to play an important role in glutamate-induced neuronal cell death. In the present study, we examined whether NADPH oxidase serves as a source of ROS production and plays a role in glutamate-induced cell death in SH-SY5Y human neuroblastoma cells. Stimulation of the cells with glutamate (100 mM) induced apoptotic cell death and increase in the level of ROS, and these effects of glutamate were significantly suppressed by the inhibitors of the NADPH oxidase, diphenylene iodonium, apocynin, and neopterine. In addition, RT-PCR revealed that SH-SY5Y cells expressed mRNA of gp91phox, p22phox and cytosolic p47phox, p67phox and p40phox, the components of the plasma membrane NADPH oxidase. Treatment with glutamate also resulted in activation and translocation of Rac1 to the plasma membrane. Moreover, the expression of Rac1N17, a dominant negative mutant of Rac1, significantly blocked the glutamate-induced ROS generation and cell death. Collectively, these results suggest that the plasma membrane-bound NADPH oxidase complex may play an essential role in the glutamate-induced apoptotic cell death through increased production of ROS.  相似文献   

9.
Cerebellar granule neurons (CGN) cultured in a 25 mM KCl medium (K25) die apoptotically when they are transferred to a medium containing 5 mM KCl (K5). It has been previously shown that apoptotic death of CGN induced by K5 is mediated by an increase in the levels of reactive oxygen species (ROS). ROS may participate in the apoptotic program either as signaling molecules or as effectors by causing oxidative damage to lipids, DNA and proteins. In this study we evaluated ROS production in CGN treated with K5 for different periods of time and evaluated a possible correlation between ROS production and oxidation of DNA proteins and two lipid peroxidation products, conjugated dienes and malondialdehyde. Under these conditions, we found two episodes of ROS generation, one at an early time (4 h) and another at a later time point (18–24 h). We also identified two peaks in the formation of conjugated dienes, the initial and transient by-products of lipoperoxidation. The first one occurred after 4 h of K5 treatment and the other was observed after 18 h, both of them correlated with the formation of ROS. In contrast, we found significant levels of the late product of lipidperoxidation, malondialdehyde only after 18 h of treatment. Besides, we did not find significant levels of DNA and protein oxidation products that could be correlated with the observed ROS production. These results support the idea that ROS produced early by K5 treatment could act primarily as a signal of the apoptotic cell death and that ROS produced later could be mainly a product of the cell death that could contribute directly to this process.  相似文献   

10.
NOX3, a superoxide-generating NADPH oxidase of the inner ear   总被引:12,自引:0,他引:12  
Reactive oxygen species (ROS) play a major role in drug-, noise-, and age-dependent hearing loss, but the source of ROS in the inner ear remains largely unknown. Herein, we demonstrate that NADPH oxidase (NOX) 3, a member of the NOX/dual domain oxidase family of NADPH oxidases, is highly expressed in specific portions of the inner ear. As assessed by real-time PCR, NOX3 mRNA expression in the inner ear is at least 50-fold higher than in any other tissues where its expression has been observed (e.g. fetal kidney, brain, skull). Microdissection and in situ hybridization studies demonstrated that NOX3 is localized to the vestibular and cochlear sensory epithelia and to the spiral ganglions. Transfection of human embryonic kidney 293 cells with NOX3 revealed that it generates low levels of ROS on its own but produces high levels of ROS upon co-expression with cytoplasmic NOX subunits. NOX3-dependent superoxide production required a stimulus in the absence of subunits and upon co-expression with phagocyte NADPH oxidase subunits p47(phox) and p67(phox), but it was stimulus-independent upon co-expression with colon NADPH oxidase subunits NOX organizer 1 and NOX activator 1. Pre-incubation of NOX3-transfected human embryonic kidney 293 cells with the ototoxic drug cisplatin markedly enhanced superoxide production, in both the presence and the absence of subunits. Our data suggest that NOX3 is a relevant source of ROS generation in the cochlear and vestibular systems and that NOX3-dependent ROS generation might contribute to hearing loss and balance problems in response to ototoxic drugs.  相似文献   

11.
Although elevation of shear stress increases production of vascular reactive oxygen species (ROS), the role of ROS in chronic flow overload (CFO) has not been well investigated. We hypothesize that CFO increases ROS production mediated in part by NADPH oxidase, which leads to endothelial dysfunction. In six swine, CFO in carotid arteries was induced by contralateral ligation for 1 wk. In an additional group, six swine received apocynin (NADPH oxidase blocker and anti-oxidant) treatment in conjunction with CFO for 1 wk. The blood flow in carotid arteries increased from 189.2 ± 25.3 ml/min (control) to 369.6 ± 61.9 ml/min (CFO), and the arterial diameter increased by 8.6%. The expressions of endothelial nitric oxide synthase (eNOS), p22/p47(phox), and NOX2/NOX4 were upregulated. ROS production increased threefold in response to CFO. The endothelium-dependent vasorelaxation was compromised in the CFO group. Treatment with apocynin significantly reduced ROS production in the vessel wall, preserved endothelial function, and inhibited expressions of p22/p47phox and NOX2/NOX4. Although the process of CFO remodeling to restore the wall shear stress has been thought of as a physiological response, the present data implicate NADPH oxidase-produced ROS and eNOS uncoupling in endothelial dysfunction at 1 wk of CFO.  相似文献   

12.
Reactive oxygen species (ROS) are known to play an important role in glutamate-induced neuronal cell death. In the present study, we examined whether NADPH oxidase serves as a source of ROS production and plays a role in glutamate-induced cell death in SH-SY5Y human neuroblastoma cells. Stimulation of the cells with glutamate (100 mM) induced apoptotic cell death and increase in the level of ROS, and these effects of glutamate were significantly suppressed by the inhibitors of the NADPH oxidase, diphenylene iodonium, apocynin, and neopterine. In addition, RT-PCR revealed that SH-SY5Y cells expressed mRNA of gp91phox, p22phox and cytosolic p47phox, p67phox and p40phox, the components of the plasma membrane NADPH oxidase. Treatment with glutamate also resulted in activation and translocation of Rac1 to the plasma membrane. Moreover, the expression of Rac1N17, a dominant negative mutant of Rac1, significantly blocked the glutamate-induced ROS generation and cell death. Collectively, these results suggest that the plasma membrane-bound NADPH oxidase complex may play an essential role in the glutamate-induced apoptotic cell death through increased production of ROS.  相似文献   

13.
14.
Two novel proteins activate superoxide generation by the NADPH oxidase NOX1   总被引:16,自引:0,他引:16  
NOX1, an NADPH oxidase expressed predominantly in colon epithelium, shows a high degree of similarity to the phagocyte NADPH oxidase. However, superoxide generation by NOX1 has been difficult to demonstrate. Here we show that NOX1 generates superoxide when co-expressed with the p47(phox) and p67(phox) subunits of the phagocyte NADPH oxidase but not when expressed by itself. Since p47(phox) and p67(phox) are restricted mainly to myeloid cells, we searched for their homologues and identified two novel cDNAs. The mRNAs of both homologues were found predominantly in colon epithelium. Differences between the homologues and the phagocyte NADPH oxidase subunits included the lack of the autoinhibitory domain and the protein kinase C phosphorylation sites in the p47(phox) homologue as well as the absence of the first Src homology 3 domain and the presence of a hydrophobic stretch in the p67(phox) homologue. Co-expression of NOX1 with the two novel proteins led to stimulus-independent high level superoxide generation. Stimulus dependence of NOX1 was restored when p47(phox) was used to replace its homologue. In conclusion, NOX1 is a superoxide-generating enzyme that is activated by two novel proteins, which we propose to name NOXO1 (NOX organizer 1) and NOXA1 (NOX activator 1).  相似文献   

15.
Superoxide anion (O2-*) production is elevated in sympathetic ganglion neurons and in the vasculature of hypertensive animals; however, it is not known what enzymatic pathway(s) are responsible for O2-* production. To determine the pathway(s) of O2-* production in sympathetic neurons, we examined the presence of mRNA of NADPH oxidase subunits in sympathetic ganglionic neurons and differentiated PC-12 cells. The mRNAs for NADPH oxidase subunits p47phox, p22phox, gp91phox, and NOX1 were present in sympathetic neurons and PC-12 cells, whereas the NOX4 homologue was present in sympathetic neurons but not PC-12 cells. Freshly dissociated celiac ganglion neurons from normal rats and PC-12 cells produced O2-* when treated with the PKC activator PMA; O2-* production increased by 317% and 254%, respectively. The PMA-evoked increases were reduced by pretreatment with the NADPH oxidase inhibitor apocynin. These findings indicate that NADPH oxidase is the primary source of O2-* in sympathetic ganglion neurons. When celiac ganglia from hypertensive rats were incubated with apocynin, O2-* levels were reduced to the same levels as normotensive animals, indicating that NADPH oxidase activity accounted for the elevated O2-* levels in hypertensive animals. To test this latter finding, we compared NADPH oxidase activity in extracts of prevertebral sympathetic ganglia of DOCA-salt hypertensive rats and sham-operated rats. NADPH oxidase activities were 49.9% and 78.6% higher in sympathetic ganglia of DOCA rats compared with normotensive controls when using beta-NADH and beta-NADPH as substrates, respectively. Thus elevated O2-* levels in hypertension may be a result of the increased activity of NADPH oxidase in postganglionic sympathetic neurons.  相似文献   

16.
Amyloid beta peptide (Abeta) accumulates in the CNS in Alzheimer's disease. Both the full peptide (1-42) or the 25-35 fragment are toxic to neurons in culture. We have used fluorescence imaging technology to explore the mechanism of neurotoxicity in mixed asytrocyte/neuronal cultures prepared from rat or mouse cortex or hippocampus, and have found that Abeta acts preferentially on astrocytes but causes neuronal death. Abeta causes sporadic transient increases in [Ca2+]c in astrocytes, associated with a calcium dependent increased generation of reactive oxygen species (ROS) and glutathione depletion. This caused a slow dissipation of mitochondrial potential on which abrupt calcium dependent transient depolarizations were superimposed. The mitochondrial depolarization was reversed by mitochondrial substrates glutamate, pyruvate or methyl succinate, and by NADPH oxidase (NOX) inhibitors, suggesting that it reflects oxidative damage to metabolic pathways upstream of mitochondrial complex I. The Abeta induced increase in ROS and the mitochondrial depolarization were absent in cells cultured from transgenic mice lacking the NOX component, gp91phox. Neuronal death after 24 h of Abeta exposure was dramatically reduced both by NOX inhibitors and in gp91phox knockout mice. Thus, by raising [Ca2+]c in astrocytes, Abeta activates NOX, generating oxidative stress that is transmitted to neurons, causing neuronal death.  相似文献   

17.
Dual Oxidases (DUOX) 1 and 2 are efficiently expressed in thyroid, gut, lung and immune system. The function and the regulation of these enzymes in mammals are still largely unknown. We report here that DUOX 1 and 2 are expressed in human neuroblastoma SK-N-BE cells as well as in a human oligodendrocyte cell line (MO3-13) and in rat brain and they are induced by platelet derived growth factor (PDGF). The levels of DUOX 1 and 2 proteins and mRNAs are induced by reactive oxygen species (ROS) produced by the membrane NADPH oxidase. As to the mechanism, we find that PDGF stimulates membrane NADPH oxidase to produce ROS, which stabilize DUOX1 and 2 mRNAs and increases the levels of the proteins. Silencing of gp91(phox) (NOX2), or of the other membrane subunit of NADPH oxidase, p22(phox), blocks PDGF induction of DUOX1 and 2. These data unravel a novel mechanism of regulation of DUOX enzymes by ROS and identify a circuitry linking NADPH oxidase activity to DUOX1 and 2 levels in neuroblastoma cells.  相似文献   

18.
Reactive oxygen species (ROS) derived from vascular NADPH oxidase are important in normal and pathological regulation of vessel growth and function. Cell-specific differences in expression and function of the catalytic subunit of NADPH oxidase may contribute to differences in vascular cell response to NADPH oxidase activation. We examined the functional expression of gp91phox on NADPH oxidase activity in vascular smooth muscle cells (SMC) and fibroblasts (FB). As measured by dihydroethidium fluorescence in situ, superoxide (O2-*) levels were greater in adventitial cells compared with medial SMC in wild-type aorta. In contrast, there was no difference in O2-* levels between adventitial cells and medial SMC in aorta from gp91phox-deficient (gp91phox KO) mice. Adventitial-derived FB and medial SMC were isolated from the aorta of wild-type and gp91phox KO mice and grown in culture. Consistent with the observations in situ, basal and stimulated ROS levels were reduced in FB isolated from aorta of gp91phox KO compared with FB from wild-type aorta, whereas ROS levels were similar in SMC derived from gp91phox KO and wild-type aorta. There were no differences in expression of superoxide dismutase between gp91phox KO and wild-type FB to account for these observations. Because gp91phox is associated with membranes, we examined NADPH-stimulated O2-. production in membrane-enriched fractions of cell lysate. As measured by chemiluminescence, NADPH oxidase activity was markedly greater in wild-type FB compared with gp91phox KO FB but did not differ among the SMCs. Confirming functional expression of gp91phox in FB, antisense to gp91phox decreased ROS levels in wild-type FB. Finally, deficiency of gp91phox did not alter expression of the gp91phox homolog NOX4 in isolated FB. We conclude that the neutrophil subunit gp91phox contributes to NADPH oxidase function in vascular FB, but not SMC.  相似文献   

19.
Reactive oxygen species (ROS) generated by the NADPH oxidases are conventionally thought to be cytotoxic and mutagenic and at high levels induce an oxidative stress response. The phagocyte NADPH oxidase catalyzes the NADPH-dependent reduction of molecular oxygen to generate superoxide O2-., which can dismute to generate ROS species. Together, these ROS participate in host defence by killing or damaging invading microbes. Flavocytochrome b558 is the catalytic core of the phagocyte NADPH oxidase and consists of a large glycoprotein gp91phox or Nox-2 and a small protein p22phox. The other components of the NADPH oxidase are cytosolic proteins, namely p67phox, p47phox, p40phox and Rac. A defect in any of the genes encoding gp91phox, p22phox, p67phox or p47phox results in chronic granulomatous disease, a genetic disorder characterized by severe and recurrent infections. Evidence is rapidly accumulating that low level of ROS were produced by NADPH oxidase homologs in non-phagocytic cells. To date, six human homologs (Nox-1, Nox-3, Nox-4, Nox-5, Duox-1 and Duox-2) have been recently identified in a variety of non-phagocytic cells. The identification of Nox-1 was quickly followed by the cloning of Nox-3, Nox-4, and Nox-5. In parallel, two very large members of the Nox family were discovered, namely Duox-1 and Duox-2, initially also referred to as thyroid oxidases. The physiological functions of Nox-dependent ROS generation are in progress and still require detailed characterization. Activation mechanisms and tissue distribution of the different members of the Nox family are very different, suggesting distinct physiological functions. Nox family enzymes are likely to be involved in a variety of physiological events including cell proliferation, host defence, differentiation, apoptosis, senescence and activation of growth-related signaling pathways. An increase and a decrease in the function of Nox enzymes can contribute to a wide range of pathological processes.  相似文献   

20.
Xiao L  Ge Y  Sun L  Xu X  Xie P  Zhan M  Wang M  Dong Z  Li J  Duan S  Liu F  Xiao P 《Free radical research》2012,46(2):174-183
Albumin induced epithelial-mesenchymal transition (EMT) of renal tubular cells through reactive oxygen species (ROS) pathway plays an important role in tubulointerstitial fibrosis. Cordycepin (3 -deoxyadenosine), a potential antioxidant, was demonstrated to have various pharmacological effects and could inhibit EMT of some cells. However, the role of cordycepin on albumin-induced EMT in renal tubular cells (HK2) is unclear. In this study, we investigated the effect of cordycepin on albumin-induced EMT of HK2 cells and its mechanisms. HK-2 cells were exposed to bovine serum albumin with or without pretreatment with cordycepin. Results showed that albumin significantly induced EMT formation of HK-2 which associated with NADPH oxidase activation and intracellular ROS overproduction through increased Rac1 activity and expression of NOX4, p22phox and p47phox, while these effects were abolished in that pretreated with cordycepin. In conclusion, cordycepin could ameliorate albumin-induced EMT of HK2 cells by decreasing NADPH oxidase activity and inhibiting ROS production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号