首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The reaction of pentaerythritol tetranitrate reductase with reducing and oxidizing substrates has been studied by stopped-flow spectrophotometry, redox potentiometry, and X-ray crystallography. We show in the reductive half-reaction of pentaerythritol tetranitrate (PETN) reductase that NADPH binds to form an enzyme-NADPH charge transfer intermediate prior to hydride transfer from the nicotinamide coenzyme to FMN. In the oxidative half-reaction, the two-electron-reduced enzyme reacts with several substrates including nitroester explosives (glycerol trinitrate and PETN), nitroaromatic explosives (trinitrotoluene (TNT) and picric acid), and alpha,beta-unsaturated carbonyl compounds (2-cyclohexenone). Oxidation of the flavin by the nitroaromatic substrate TNT is kinetically indistinguishable from formation of its hydride-Meisenheimer complex, consistent with a mechanism involving direct nucleophilic attack by hydride from the flavin N5 atom at the electron-deficient aromatic nucleus of the substrate. The crystal structures of complexes of the oxidized enzyme bound to picric acid and TNT are consistent with direct hydride transfer from the reduced flavin to nitroaromatic substrates. The mode of binding the inhibitor 2,4-dinitrophenol (2,4-DNP) is similar to that observed with picric acid and TNT. In this position, however, the aromatic nucleus is not activated for hydride transfer from the flavin N5 atom, thus accounting for the lack of reactivity with 2,4-DNP. Our work with PETN reductase establishes further a close relationship to the Old Yellow Enzyme family of proteins but at the same time highlights important differences compared with the reactivity of Old Yellow Enzyme. Our studies provide a structural and mechanistic rationale for the ability of PETN reductase to react with the nitroaromatic explosive compounds TNT and picric acid and for the inhibition of enzyme activity with 2,4-DNP.  相似文献   

2.
Garcia-Viloca M  Truhlar DG  Gao J 《Biochemistry》2003,42(46):13558-13575
We have studied the hydride transfer reaction catalyzed by the enzyme dihydrofolate reductase (DHFR) and the coenzyme nicotinamide adenine dinucleotide phosphate (NADPH); the substrate is 5-protonated 7,8-dihydrofolate, and the product is tetrahydrofolate. The potential energy surface is modeled by a combined quantum mechanical-molecular mechanical (QM/MM) method employing Austin model 1 (AM1) and a simple valence bond potential for 69 QM atoms and employing the CHARMM22 and TIP3P molecular mechanics force fields for the other 21 399 atoms; the QM and MM regions are joined by two boundary atoms treated by the generalized hybrid orbital (GHO) method. All simulations are carried out using periodic boundary conditions at neutral pH and 298 K. In stage 1, a reaction coordinate is defined as the difference between the breaking and forming bond distances to the hydride ion, and a quasithermodynamic free energy profile is calculated along this reaction coordinate. This calculation includes quantization effects on bound vibrations but not on the reaction coordinate, and it is used to locate the variational transition state that defines a transition state ensemble. Then, the key interactions at the reactant, variational transition state, and product are analyzed in terms of both bond distances and electrostatic energies. The results of both analyses support the conclusion derived from previous mutational studies that the M20 loop of DHFR makes an important contribution to the electrostatic stabilization of the hydride transfer transition state. Third, transmission coefficients (including recrossing factors and multidimensional tunneling) are calculated and averaged over the transition state ensemble. These averaged transmission coefficients, combined with the quasithermodynamic free energy profile determined in stage 1, allow us to calculate rate constants, phenomenological free energies of activation, and primary and secondary kinetic isotope effects. A primary kinetic isotope effect (KIE) of 2.8 has been obtained, in good agreement with the experimentally determined value of 3.0 and with the value 3.2 calculated previously. The primary KIE is mainly a consequence of the quantization of bound vibrations. In contrast, the secondary KIE, with a value of 1.13, is almost entirely due to dynamical effects on the reaction coordinate, especially tunneling.  相似文献   

3.
The crystal structure of aryl-alcohol oxidase (AAO), a flavoenzyme involved in lignin degradation, reveals two active-site histidines, whose role in the two enzyme half-reactions was investigated. The redox state of flavin during turnover of the variants obtained show a stronger histidine involvement in the reductive than in the oxidative half-reaction. This was confirmed by the k(cat)/K(m(Al)) and reduction constants that are 2-3 orders of magnitude decreased for the His546 variants and up to 5 orders for the His502 variants, while the corresponding O(2) constants only decreased up to 1 order of magnitude. These results confirm His502 as the catalytic base in the AAO reductive half-reaction. The solvent kinetic isotope effect (KIE) revealed that hydroxyl proton abstraction is partially limiting the reaction, while the α-deuterated alcohol KIE showed a stereoselective hydride transfer. Concerning the oxidative half-reaction, directed mutagenesis and computational simulations indicate that only His502 is involved. Quantum mechanical/molecular mechanical (QM/MM) reveals an initial partial electron transfer from the reduced FADH(-) to O(2), without formation of a flavin-hydroperoxide intermediate. Reaction follows with a nearly barrierless His502H(+) proton transfer that decreases the triplet/singlet gap. Spin inversion and second electron transfer, concomitant with a slower proton transfer from flavin N5, yields H(2)O(2). No solvent KIE was found for O(2) reduction confirming that the His502 proton transfer does not limit the oxidative half-reaction. However, the small KIE on k(cat)/K(m(Ox)), during steady-state oxidation of α-deuterated alcohol, suggests that the second proton transfer from N5H is partially limiting, as predicted by the QM/MM simulations.  相似文献   

4.
Fan F  Gadda G 《Biochemistry》2007,46(21):6402-6408
The hydride transfer reaction catalyzed by choline oxidase under irreversible regime, i.e., at saturating oxygen, was shown in a recent study to occur quantum mechanically within a highly preorganized active site, with the reactive configuration for hydride tunneling being minimally affected by environmental vibrations of the reaction coordinate other than those affecting the distance between the alpha-carbon of the choline alkoxide substrate and the N(5) atom of the enzyme-bound flavin cofactor [Fan, F., and Gadda, G. (2005) J. Am. Chem. Soc. 127, 17954-17961]. In this study, we have determined the effects of pH and temperature on the substrate kinetic isotope effects with 1,2-[2H4]choline as substrate for choline oxidase at 0.2 mM oxygen to gain insights on the mechanism of hydride transfer under reversible catalytic regime. The data presented indicated that the kinetic complexity arising from the net flux through the reverse of the hydride transfer step changed with temperature, with the hydride transfer reaction becoming more reversible with increasing temperatures. After this kinetic complexity was accounted for, analyses of the kcat/Km and D(kcat/Km) values determined at 0.2 mM according to the Eyring and Arrhenius formalisms suggested that the quantum mechanical nature of the hydride transfer reaction is, not surprisingly, maintained during enzymatic catalysis under reversible regime. A comparison of the thermodynamic and kinetic parameters of the hydride transfer reaction under reversible and irreversible catalytic regimes showed that the enthalpies of activation (DeltaH++) were significantly larger in the reversible catalytic regime. This reflects the presence of an enthalpically unfavorable internal equilibrium of the enzyme-substrate Michaelis complex occurring prior to, and independently from, CH bond cleavage. Such an internal equilibrium is required to preorganize the enzyme-substrate complex for efficient quantum mechanical tunneling of the hydride ion from the substrate alpha-carbon to the flavin N(5) atom.  相似文献   

5.
Hay S  Scrutton NS 《Biochemistry》2008,47(37):9880-9887
Hydrostatic pressure offers an alternative to temperature as an experimental probe of hydrogen-transfer reactions. H tunneling reactions have been shown to exhibit kinetic isotope effects (KIEs) that are sensitive to pressure, and environmentally coupled H tunneling reactions, those reactions in which H transfer is coupled to atomic fluctuations (a promoting vibration) along the reaction coordinate, often have quite temperature-dependent KIEs. We present here a theoretical treatment of the combined effect of temperature and pressure on environmentally coupled H tunneling reactions. We develop a generalized expression for the KIE, which can be used as a simple fitting function for combined experimental temperature- and pressure-dependent KIE data sets. With this expression, we are able to extract information about the pressure dependence of both the apparent tunneling distance and the frequency of the promoting vibration. The KIE expression is tested on two data sets {the reduction of chloranil by leuco crystal violet [Isaacs, N. S., Javaid, K., and Rannala, E. (1998) J. Chem. Soc., Perkin Trans. 2, 709-711] and the reduction of morphinone reductase by NADH [Hay, S., Sutcliffe, M. J., and Scrutton, N. S. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 507-512]} and suggests that hydrostatic pressure is a sensitive probe of nuclear quantum mechanical effects in H-transfer reactions.  相似文献   

6.
Frederick KK  Palfey BA 《Biochemistry》2005,44(40):13304-13314
p-Hydroxybenzoate hydroxylase (PHBH) is an FAD-dependent monooxygenase that catalyzes the hydroxylation of p-hydroxybenzoate (pOHB) to 3,4-dihydroxybenzoate in an NADPH-dependent reaction. Two structural features are coupled to control the reactivity of PHBH with NADPH: a proton-transfer network that allows protons to be passed between the sequestered active site and solvent and a flavin that adopts two positions: "in", where the flavin is near pOHB, and "out", where the flavin is near NADPH. PHBH uses the proton-transfer network to test for the presence of a suitable aromatic substrate before allowing the flavin to adopt the NADPH-accessible conformation. In this work, kinetic analysis of the His72Asn mutant, with a disrupted proton-transfer network, showed that flavin movement could occur in the presence or absence of NADPH but that NADPH stimulated movement to the reactive conformation required for hydride transfer. Substrate and solvent isotope effects on the transient kinetics of reduction of the His72Asn mutant showed that proton transfer was linked to flavin movement and that the conformational change occurred in a step separate from that of hydride transfer. Proton transfers during the reductive half-reaction were observed directly in the wild-type enzyme by performing experiments in the presence of a fluorescent pH-indicator dye in unbuffered solutions. NADPH binding caused rapid proton release from the enzyme, followed by proton uptake after flavin reduction. Solvent and substrate kinetic isotope effects showed that proton-coupled flavin movement and reduction also occurred in different steps in wild-type PHBH. These results allow a detailed kinetic scheme to be proposed for the reductive half-reaction of the wild-type enzyme. Three kinetic models considered for substrate-induced isomerization are analyzed in the Appendix.  相似文献   

7.
The crystal structure of the NADH-dependent bacterial flavoenzyme morphinone reductase (MR) has been determined at 2.2-A resolution in complex with the oxidizing substrate codeinone. The structure reveals a dimeric enzyme comprising two 8-fold beta/alpha barrel domains, each bound to FMN, and a subunit folding topology and mode of flavin-binding similar to that found in Old Yellow Enzyme (OYE) and pentaerythritol tetranitrate (PETN) reductase. The subunit interface of MR is formed by interactions from an N-terminal beta strand and helices 2 and 8 of the barrel domain and is different to that seen in OYE. The active site structures of MR, OYE, and PETN reductase are highly conserved reflecting the ability of these enzymes to catalyze "generic" reactions such as the reduction of 2-cyclohexenone. A region of polypeptide presumed to define the reducing coenzyme specificity is identified by comparison of the MR structure (NADH-dependent) with that of PETN reductase (NADPH-dependent). The active site acid identified in OYE (Tyr-196) and conserved in PETN reductase (Tyr-186) is replaced by Cys-191 in MR. Mutagenesis studies have established that Cys-191 does not act as a crucial acid in the mechanism of reduction of the olefinic bond found in 2-cyclohexenone and codeinone.  相似文献   

8.
Many biological C-H activation reactions exhibit nonclassical kinetic isotope effects (KIEs). These nonclassical KIEs are too large (kH/kD > 7) and/or exhibit unusual temperature dependence such that the Arrhenius prefactor KIEs (AH/AD) fall outside of the semiclassical range near unity. The focus of this minireview is to discuss such KIEs within the context of the environmentally coupled hydrogen tunneling model. Full tunneling models of hydrogen transfer assume that protein or solvent fluctuations generate a reactive configuration along the classical, heavy-atom coordinate, from which the hydrogen transfers via nuclear tunneling. Environmentally coupled tunneling also invokes an environmental vibration (gating) that modulates the tunneling barrier, leading to a temperature-dependent KIE. These properties directly link enzyme fluctuations to the reaction coordinate for hydrogen transfer, making a quantum view of hydrogen transfer necessarily a dynamic view of catalysis. The environmentally coupled hydrogen tunneling model leads to a range of magnitudes of KIEs, which reflect the tunneling barrier, and a range of AH/AD values, which reflect the extent to which gating modulates hydrogen transfer. Gating is the primary determinant of the temperature dependence of the KIE within this model, providing insight into the importance of this motion in modulating the reaction coordinate. The potential use of variable temperature KIEs as a direct probe of coupling between environmental dynamics and the reaction coordinate is described. The evolution from application of a tunneling correction to a full tunneling model in enzymatic H transfer reactions is discussed in the context of a thermophilic alcohol dehydrogenase and soybean lipoxygenase-1.  相似文献   

9.
C-H bond breakage by tryptophan tryptophylquinone (TTQ)-dependent methylamine dehydrogenase (MADH) occurs by vibrationally assisted tunneling (Basran, J., Sutcliffe, M. J., and Scrutton, N. S. (1999) Biochemistry 38, 3218--3222). We show here a similar mechanism in TTQ-dependent aromatic amine dehydrogenase (AADH). The rate of TTQ reduction by dopamine in AADH has a large, temperature independent kinetic isotope effect (KIE = 12.9 +/- 0.2), which is highly suggestive of vibrationally assisted tunneling. H-transfer is compromised with benzylamine as substrate and the KIE is deflated (4.8 +/- 0.2). The KIE is temperature-independent, but reaction rates are strongly dependent on temperature. With tryptamine as substrate reaction rates can be determined only at low temperature as C-H bond cleavage is rapid, and an exceptionally large KIE (54.7 +/- 1.0) is observed. Studies with deuterated tryptamine suggest vibrationally assisted tunneling is the mechanism of deuterium and, by inference, hydrogen transfer. Bond cleavage by MADH using a slow substrate (ethanolamine) occurs with an inflated KIE (14.7 +/- 0.2 at 25 degrees C). The KIE is temperature-dependent, consistent with differential tunneling of protium and deuterium. Our observations illustrate the different modes of H-transfer in MADH and AADH with fast and slow substrates and highlight the importance of barrier shape in determining reaction rate.  相似文献   

10.
The intrinsic isotope effect on the reduction of the FAD-containing dehydrogenase electron transferase, adrenodoxin reductase, by (4S)-[2H]NADPH has been determined to be 7.1 to 7.7. The replacement of FAD by a series of FAD analogs at the active site of adrenodoxin reductase with oxidation-reduction potentials which vary over a range of 212 mV has made it possible to extrapolate to this limiting value from the variation in the observed isotope effect on Vmax with flavin midpoint potential. Stop-flow studies which allow the direct determination of the intrinsic isotope effect on the reductive half-reaction corroborate this result. During the steady state reduction of ferricyanide by the native enzyme under conditions of Vmax, this isotope effect is almost fully expressed (VH/VD = 6.7 to 6.8). In contrast, we observe a dramatic attenuation of the intrinsic isotope effect (due to hydride transfer to flavin) when the oxidative half-reaction is mediated by the natural acceptor protein, the 2Fe/2S ferredoxin, adrenodoxin. In a coupled three-protein system, the adrenodoxin-mediated reductions of both the artificial electron acceptor, cytochrome c, and the physiological electron acceptor, cytochrome P-450scc, by adrenodoxin reductase occur at similar rates and with similar kinetic isotope effects (1.9 to 2.0) when (4S)-[2H]NADPH is the reductant. We infer similar mechanisms for the reduction of both cytochromes. These results are in agreement with previous studies (Lambeth, J.D., and Kamin, H. (1979) J. Biol. Chem. 254, 2766-2774) which show that the reductive half-reaction is not solely rate-determining in adrenodoxin-mediated processes. The observation of a linear free energy relationship between Vmax and the flavin midpoint potential during steady state reduction of ferricyanide confirms that the reductive half-reaction is rate-determining in this assay. The relationship between Vmax and flavin midpoint potential in reactions which require adrenodoxin suggests that the midpoint potential of native adrenodoxin reductase has been optimized. Thus, the apoenzyme of adrenodoxin reductase tailors the midpoint potential of bound FAD in order to balance the activation energies of the reductive and oxidative half-reactions.  相似文献   

11.
Agrawal N  Hong B  Mihai C  Kohen A 《Biochemistry》2004,43(7):1998-2006
The enzyme thymidylate synthase (TS) catalyzes a complex reaction that involves forming and breaking at least six covalent bonds. The physical nature of the hydride transfer step in this complex reaction cascade has been studied by means of isotope effects and their temperature dependence. Competitive kinetic isotope effects (KIEs) on the second-order rate constant (V/K) were measured over a temperature range of 5-45 degrees C. The observed H/T ((T)V/K(H)) and D/T ((T)V/K(D)) KIEs were used to calculate the intrinsic KIEs throughout the temperature range. The Swain-Schaad relationships between the H/T and D/T V/K KIEs revealed that the hydride transfer step is the rate-determining step at the physiological temperature of Escherichia coli (20-30 degrees C) but is only partly rate-determining at elevated and reduced temperatures. H/D KIE on the first-order rate constant k(cat) ((D)k = 3.72) has been previously reported [Spencer et al. (1997) Biochemistry 36, 4212-4222]. Additionally, the Swain-Schaad relationships between that (D)k and the V/K KIEs reported here suggested that at 20 degrees C the hydride transfer step is the rate-determining step for both rate constants. Intrinsic KIEs were calculated here and were found to be virtually temperature independent (DeltaE(a) = 0 within experimental error). The isotope effects on the preexponential Arrhenius factors for the intrinsic KIEs were A(H)/A(T) = 6.8 +/- 2.8 and A(D)/A(T) = 1.9 +/- 0.25. Both effects are significantly above the semiclassical (no-tunneling) predicted values and indicate a contribution of quantum mechanical tunneling to this hydride transfer reaction. Tunneling correction to transition state theory would predict that these isotope effects on activation parameters result from no energy of activation for all isotopes. Yet, initial velocity measurements over the same temperature range indicate cofactor inhibition and result in significant activation energy on k(cat) (4.0 +/- 0.1 kcal/mol). Taken together, the temperature-independent KIEs, the large isotope effects on the preexponential Arrhenius factors, and a significant energy of activation all suggest vibrationally enhanced hydride tunneling in the TS-catalyzed reaction.  相似文献   

12.
A key step decisively affecting the catalytic efficiency of copper amine oxidase is stereospecific abstraction of substrate alpha-proton by a conserved Asp residue. We analyzed this step by pre-steady-state kinetics using a bacterial enzyme and stereospecifically deuterium-labeled substrates, 2-phenylethylamine and tyramine. A small and temperature-dependent kinetic isotope effect (KIE) was observed with 2-phenylethylamine, whereas a large and temperature-independent KIE was observed with tyramine in the alpha-proton abstraction step, showing that this step is driven by quantum mechanical hydrogen tunneling rather than the classical transition-state mechanism. Furthermore, an Arrhenius-type preexponential factor ratio approaching a transition-state value was obtained in the reaction of a mutant enzyme lacking the critical Asp. These results provide strong evidence for enzyme-enhanced hydrogen tunneling. X-ray crystallographic structures of the reaction intermediates revealed a small difference in the binding mode of distal parts of substrates, which would modulate hydrogen tunneling proceeding through either active or passive dynamics.  相似文献   

13.
Enzymatic breakage of the substrate C-H bond by Methylophilus methyltrophus (sp. W3A1) methylamine dehydrogenase (MADH) has been studied by stopped-flow spectroscopy. The rate of reduction of the tryptophan tryptophylquinone (TTQ) cofactor has a large kinetic isotope effect (KIE = 16.8 +/- 0.5), and the KIE is independent of temperature. Analysis of the temperature dependence of C-H bond breakage revealed that extreme (ground state) quantum tunneling is responsible for the transfer of the hydrogen nucleus. Reaction rates are strongly dependent on temperature, indicating thermally induced, vibrational motion drives the H-transfer reaction. The data provide direct experimental evidence for enzymatic bond breakage by extreme tunneling driven by vibrational motion of the protein scaffold. The results demonstrate that classical transition state theory and its tunneling derivatives do not adequately describe this enzymatic reaction.  相似文献   

14.
The NADH-dependent polysulfide reductase (Npsr) from Shewanella loihica PV-4 is a member of the single cysteine-containing subset of the family of disulfide reductases represented by glutathione reductase. We have determined the kinetics of the reductive half-reaction of the enzyme with NADH using stopped-flow spectroscopy and kinetic isotope effects, and these results indicate that the reductive and oxidative half-reactions are both partially rate-limiting for enzyme turnover. During reaction with NADH, the reduced nucleotide appears to bind rapidly in an unproductive conformation, followed by the formation of a productive E·NADH complex and subsequent electron transfer to FAD. F161 of Npsr fills the space in which the nicotinamide ring of NADH would be expected to bind. We have shown that while this residue is not absolutely required for catalysis, it does assist in the forward commitment to catalysis through its role in the reductive half reaction, where it appears to enhance hydride transfer in the productive E·NADH complex. While the fluorescence and absorbance spectra of the stable redox forms of the wild-type and F161A mutant enzymes are similar, intermediates formed during reduction and turnover have different characteristics and appear to indicate that the enzyme–NADH complex formed just prior to hydride transfer on the F161A enzyme has weaker FAD–NADH interactions than the wild-type enzyme, consistent with a “looser” enzyme–NADH complex. The 2.7 Å crystal structure of the F161A mutant was determined, and shows that the nicotinamide ring of NADH would have the expected freedom of motion in the more open NADH binding cavity.  相似文献   

15.
The roles of His181, His184 and Tyr186 in PETN reductase have been examined by mutagenesis, spectroscopic and stopped-flow kinetics, and by determination of crystallographic structures for the Y186F PETN reductase and reduced wild-type enzyme-progesterone complex. Residues His181 and His184 are important in the binding of coenzyme, steroids, nitroaromatic ligands and the substrate 2-cyclohexen-1-one. The H181A and H184A enzymes retain activity in reductive and oxidative half-reactions, and thus do not play an essential role in catalysis. Ligand binding and catalysis is not substantially impaired in Y186F PETN reductase, which contrasts with data for the equivalent mutation (Y196F) in Old Yellow Enzyme. The structure of Y186F PETN reductase is identical to wild-type enzyme, with the obvious exception of the mutation. We show in PETN reductase that Tyr186 is not a key proton donor in the reduction of alpha/beta unsaturated carbonyl compounds. The structure of two electron-reduced PETN reductase bound to the inhibitor progesterone mimics the catalytic enzyme-steroid substrate complex and is similar to the structure of the oxidized enzyme-inhibitor complex. The reactive C1-C2 unsaturated bond of the steroid is inappropriately orientated with the flavin N5 atom for hydride transfer. With steroid substrates, the productive conformation is achieved by orientating the steroid through flipping by 180 degrees , consistent with known geometries for hydride transfer in flavoenzymes. Our data highlight mechanistic differences between Old Yellow Enzyme and PETN reductase and indicate that catalysis requires a metastable enzyme-steroid complex and not the most stable complex observed in crystallographic studies.  相似文献   

16.
Based on the similarity in both structure and function of the reductase domain of neuronal nitric oxide synthase (nNOSred) to that of NADPH-cytochrome P450 reductase (CPR), we determined whether the characteristics of hydride transfer from NADPH to flavin adenine dinucleotide (FAD) were similar for both proteins. Secondly, we questioned whether hydride transfer from NADPH to either nNOSred or holo-nNOS was rate limiting for reactions catalyzed by these two proteins. Utilizing 500 MHz proton NMR and deuterated substrate, we determined that the stereospecificity of hydride transfer from NADPH and the conformation of the nicotinamide ring around the glycosidic bond were similar between CPR and nNOSred. Specifically, nNOSred abstracts the A-side hydrogen from NADPH, and the nicotinamide ring is in the anti conformation. We determined that the rate of hydride transfer to FAD appears to become partially rate limiting only for exceptionally good electron acceptors such as cytochrome c. Hydride transfer is not rate limiting for NO. production under any conditions used in this study. Interestingly, the deuterium isotope effect was decreased in the cytochrome c reductase assay with both nNOS and nNOSred when the assays were conducted in high ionic strength buffer, suggesting an increase in the rate of hydride transfer to FAD. These results are in stark contrast to results obtained with CPR (D. S. Sem and C. B. Kasper, 1995, Biochemistry 34, 3391-3398) whereby hydride transfer is partially rate limiting at high, but not at low, ionic strength. The seemingly opposite results in deuterium isotope effect observed with CPR and nNOSred, under conditions of high and low ionic strength, suggest differences in structure and/or regulation of these important flavoproteins.  相似文献   

17.
C Grubmeyer  H Teng 《Biochemistry》1999,38(22):7355-7362
L-Histidinol dehydrogenase catalyzes the biosynthetic oxidation of L-histidinol to L-histidine with sequential reduction of two molecules of NAD. Previous isotope exchange results had suggested that the oxidation of histidinol to the intermediate histidinaldehyde occurred 2-3-fold more rapidly than overall catalysis. In this work, we present kinetic isotope effects (KIE) studies at pH 9.0 and at pH 6.7 with stereospecifically mono- and dideuterated histidinols. The data at pH 9.0 support minimal participation of the first hydride transfer and substantial participation of the second hydride transfer in the overall rate limitation. Stopped-flow experiments with protiated histidinol revealed a small burst of NADH production with stoichiometry of 0.12 per subunit, and 0.25 per subunit with dideuterated histidinol, indicating that the overall first half-reaction was not significantly faster than the second reaction sequence. Results from kcat and kcat/KM titrations with histidinol, NAD, and the alternative substrate imidazolyl propanediol demonstrated an essential base with pKa values between 7.7 and 8.4. In KIE experiments performed at pH 6.7 or with a coenzyme analogue at pH 9. 0, the first hydride transfer became more rate limiting. Kinetic simulations based on rate constants estimated from this work fit well with a mechanism that includes a relatively fast, and thermodynamically unfavorable, hydride transfer from histidinol and a slower, irreversible second hydride transfer from a histidinaldehyde derivative. Thus, although the chemistry of the first hydride transfer is fast, both partial reactions participate in the overall rate limitation.  相似文献   

18.
Human methionine synthase reductase (MSR) is a key enzyme in folate and methionine metabolism as it reactivates the catalytically inert cob(II)alamin form of methionine synthase (MS). Electron transfer from MSR to the cob(II)alamin cofactor coupled with methyl transfer from S-adenosyl methionine returns MS to the active methylcob(III)alamin state. MSR contains stoichiometric amounts of FAD and FMN, which shuttle NADPH-derived electrons to the MS cob(II)alamin cofactor. Herein, we have investigated the pre-steady state kinetic behavior of the reductive half-reaction of MSR by anaerobic stopped-flow absorbance and fluorescence spectroscopy. Photodiode array and single-wavelength spectroscopy performed on both full-length MSR and the isolated FAD domain enabled assignment of observed kinetic phases to mechanistic steps in reduction of the flavins. Under single turnover conditions, reduction of the isolated FAD domain by NADPH occurs in two kinetically resolved steps: a rapid (120 s(-1)) phase, characterized by the formation of a charge-transfer complex between oxidized FAD and NADPH, is followed by a slower (20 s(-1)) phase involving flavin reduction. These two kinetic phases are also observed for reduction of full-length MSR by NADPH, and are followed by two slower and additional kinetic phases (0.2 and 0.016 s(-1)) involving electron transfer between FAD and FMN (thus yielding the disemiquinoid form of MSR) and further reduction of MSR by a second molecule of NADPH. The observed rate constants associated with flavin reduction are dependent hyperbolically on NADPH and [4(R)-2H]NADPH concentration, and the observed primary kinetic isotope effect on this step is 2.2 and 1.7 for the isolated FAD domain and full-length MSR, respectively. Both full-length MSR and the separated FAD domain that have been reduced with dithionite catalyze the reduction of NADP+. The observed rate constant of reverse hydride transfer increases hyperbolically with NADP+ concentration with the FAD domain. The stopped-flow kinetic data, in conjunction with the reported redox potentials of the flavin cofactors for MSR [Wolthers, K. R., Basran, J., Munro, A. W., and Scrutton, N. S. (2003) Biochemistry, 42, 3911-3920], are used to define the mechanism of electron transfer for the reductive half-reaction of MSR. Comparisons are made with similar stopped-flow kinetic studies of the structurally related enzymes cytochrome P450 reductase and nitric oxide synthase.  相似文献   

19.
W L Sweet  J S Blanchard 《Biochemistry》1991,30(35):8702-8709
Kinetic parameters and primary deuterium kinetic isotope effects for NADH and five pyridine nucleotide substrates have been determined at pH 8.1 for human erythrocyte glutathione reductase. DV/KNADH and DV are equal to 1.4 and are pH independent below pH 8.1, but DV decreases to 1.0 at high pH as a group exhibiting a pK of 8.6 is deprotonated. This result suggests that as His-467' is deprotonated, the rate of the isotopically insensitive oxidative half-reaction is specifically decreased and becomes rate-limiting. For all substrates, equivalent V and V/K primary deuterium kinetic isotope effects are observed at pH values below 8.1. The primary deuterium kinetic isotope effect on V, but not V/K, is sensitive to solvent isotopic composition. The primary tritium kinetic isotope effects agree well with the corresponding value calculated from the primary deuterium kinetic isotope effects by using the Swain-Schaad relationship. This suggests that the primary deuterium kinetic isotope effects observed in these steady-state experiments are the intrinsic primary deuterium kinetic isotope effects for hydride transfer. The magnitude of the primary deuterium kinetic isotope effect is dependent on the redox potential of the pyridine nucleotide substrate used, varying from approximately 1.4 for NADH and -320 mV reductants to 2.7 for thioNADH to 4.2-4.8 for 3-acetylpyridine adenine dinucleotide (3APADH). The alpha-secondary tritium kinetic isotope effects also increase as the redox potential of the pyridine nucleotide substrate becomes more positive. Together, these data indicate that the transition state for hydride transfer is very early for NADH and becomes later for thioNADH and 3APADH, as predicted by Hammond's postulate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Rubach JK  Ramaswamy S  Plapp BV 《Biochemistry》2001,40(42):12686-12694
The participation of Val-292 in catalysis by alcohol dehydrogenase and the involvement of dynamics were investigated. Val-292 interacts with the nicotinamide ring of the bound coenzyme and may facilitate hydride transfer. The substitution of Val-292 with Ser (V292S) increases the dissociation constants for the coenzymes (NAD(+) by 50-fold, NADH by 75-fold) and the turnover numbers by 3-7-fold. The V292S enzyme crystallized in the presence of NAD(+) and 2,3,4,5,6-pentafluorobenzyl alcohol has an open conformation similar to the structure of the wild-type apo-enzyme, rather than the closed conformation observed for ternary complexes with wild-type enzyme. The V292S substitution perturbs the conformational equilibrium of the enzyme and decreases the kinetic complexity, which permits study of the hydride transfer step with steady-state kinetics. Eyring plots show that the DeltaH for the oxidation (V(1)) of the protio and deuterio benzyl alcohols is 13 kcal/mol and that the kinetic isotope effect of 4.1 is essentially temperature-independent. Eyring plots for the catalytic efficiency for reduction of benzaldehyde (V(2)/K(p)) with NADH or NADD are distinctly convex, being temperature-dependent from 5 to 25 degrees C and temperature-independent from 25 to 50 degrees C; the kinetic isotope effect of 3.2 for V(2)/K(p) is essentially independent of the temperature. The temperature dependencies and isotope effects for V(1) and V(2)/K(p) are not adequately explained by semiclassical transition state theory and are better explained by hydride transfer occurring through vibrationally assisted tunneling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号