共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Homeostasis-driven T cell proliferation occurs in response to a lymphopenic environment and is mediated by TCR and IL-7 signaling. In this report, we demonstrate a defect in the proliferation of murine naive and memory T cells lacking both E2F1 and E2F2 in response to lymphopenic conditions, suggesting that E2F1 and E2F2 function redundantly downstream of TCR and/or IL-7 signaling during homeostasis-driven proliferation. In contrast, T cell proliferation in response to antigenic stimulation is either unaffected (in vivo) or potentiated (ex vivo) by loss of E2F1 and E2F2, indicating divergent requirements for these E2F factors in T cell proliferation mediated by distinct stimuli. E2F1/E2F2 double knockout (DKO) T cells enter S phase in response to homeostatic signaling, but fail to divide, suggesting that S phase progression is either incomplete or defective. In addition, E2F1/E2F2 DKO mice do not recover normal T cell numbers following exposure to a sublethal dose of radiation, indicating that this defect in homeostasis-driven proliferation is physiologically relevant. Consistent with their failure in cell cycle progression, the differentiation of DKO T cells into memory T cells in response to homeostatic signals is significantly reduced. These observations support the idea that proliferation is required for memory T cell formation and also have implications for the development of clinical strategies to minimize the occurrence of lymphopenia-induced autoimmunity. 相似文献
3.
MDM2 expression is down-regulated upon E2F1 over-expression, but the mechanism is not well defined. In the current study, we found that E2F1 inhibits MDM2 expression by suppressing its promoter activity. Although E2F1 binds to the MDM2 promoter, the inhibitory effect of E2F1 on the MDM2 promoter does not require the direct binding. We demonstrate that E2F1 inhibits MDM2 promoter activity in a p53-dependent manner. Knockdown of p53 in U2OS cells impairs the inhibitory effect of E2F1 on the MDM2 promoter. Consistent with this observation, E2F1 does not inhibit MDM2 promoter activity in p53-deficient H1299 cells, and the inhibition is restored when p53 is expressed exogenously. Both E2F1 and p53 are up-regulated after DNA damage stimulation. We show that such stimulation induces E2F1 to inhibit MDM2 promoter activity and promote p53 accumulation. Furthermore, inhibition of MDM2 by E2F1 promotes E2F1 induced apoptosis. These data suggest that E2F1 regulates the MDM2-p53 pathway by inhibiting p53 induced up-regulation of MDM2. 相似文献
4.
5.
6.
Ho YY Deckelbaum RJ Chen Y Vogel T Talmage DA 《The Journal of biological chemistry》2001,276(46):43455-43462
Independently of its role in lipid homeostasis, apolipoprotein E (apoE) inhibits cell proliferation. We compared the effects of apoE added to media (exogenous apoE) with the effects of stably expressed apoE (endogenous apoE) on cell proliferation. Exogenous and endogenous apoE increased population doubling times by 30-50% over a period of 14 days by prolonging the G(1) phase of the cell cycle. Exogenous and endogenous apoE also decreased serum-stimulated DNA synthesis by 30-50%. However, apoE did not cause cell cycle arrest; both apoE-treated and control cells achieved equivalent saturation densities at 14 days. Further analyses demonstrated that exogenous and endogenous apoE prevented activation of MAPK but not induction of c-fos expression in response to serum growth factors. Endogenous (but not exogenous) apoE altered serum concentration-dependent effects on proliferation. Whereas control (non-apoE-expressing) cell numbers increased with increasing serum concentrations (1.6-fold for every 2-fold increase in serum), apoE-expressing cell numbers did not differ as serum levels were raised from 2.5 to 10%. In addition, in low serum (0.1%), apoE-expressing cells had elevated DNA synthesis levels compared with control cells. We conclude that apoE does not simply inhibit cell proliferation; rather, the presence of apoE alters the response to and requirement for serum mitogens. 相似文献
7.
8.
9.
10.
Defective gene expression,S phase progression,and maturation during hematopoiesis in E2F1/E2F2 mutant mice 总被引:6,自引:0,他引:6 下载免费PDF全文
E2F plays critical roles in cell cycle progression by regulating the expression of genes involved in nucleotide synthesis, DNA replication, and cell cycle control. We show that the combined loss of E2F1 and E2F2 in mice leads to profound cell-autonomous defects in the hematopoietic development of multiple cell lineages. E2F2 mutant mice show erythroid maturation defects that are comparable with those observed in patients with megaloblastic anemia. Importantly, hematopoietic defects observed in E2F1/E2F2 double-knockout (DKO) mice appear to result from impeded S phase progression in hematopoietic progenitor cells. During DKO B-cell maturation, differentiation beyond the large pre-BII-cell stage is defective, presumably due to failed cell cycle exit, and the cells undergo apoptosis. However, apoptosis appears to be the consequence of failed maturation, not the cause. Despite the accumulation of hematopoietic progenitor cells in S phase, the combined loss of E2F1 and E2F2 results in significantly decreased expression and activities of several E2F target genes including cyclin A2. Our results indicate specific roles for E2F1 and E2F2 in the induction of E2F target genes, which contribute to efficient expansion and maturation of hematopoietic progenitor cells. Thus, E2F1 and E2F2 play essential and redundant roles in the proper coordination of cell cycle progression with differentiation which is necessary for efficient hematopoiesis. 相似文献
11.
The NF2 tumor suppressor gene product, merlin, inhibits cell proliferation and cell cycle progression by repressing cyclin D1 expression 总被引:6,自引:0,他引:6 下载免费PDF全文
Xiao GH Gallagher R Shetler J Skele K Altomare DA Pestell RG Jhanwar S Testa JR 《Molecular and cellular biology》2005,25(6):2384-2394
Inactivation of the NF2 tumor suppressor gene has been observed in certain benign and malignant tumors. Recent studies have demonstrated that merlin, the product of the NF2 gene, is regulated by Rac/PAK signaling. However, the mechanism by which merlin acts as a tumor suppressor has remained obscure. In this report, we show that adenovirus-mediated expression of merlin in NF2-deficient tumor cells inhibits cell proliferation and arrests cells at G1 phase, concomitant with decreased expression of cyclin D1, inhibition of CDK4 activity, and dephosphorylation of pRB. The effect of merlin on cell cycle progression was partially overridden by ectopic expression of cyclin D1. RNA interference experiments showed that silencing of the endogenous NF2 gene results in upregulation of cyclin D1 and S-phase entry. Furthermore, PAK1-stimulated cyclin D1 promoter activity was repressed by cotransfection of NF2, and PAK activity was inhibited by expression of merlin. Interestingly, the S518A mutant form of merlin, which is refractory to phosphorylation by PAK, was more efficient than the wild-type protein in inhibiting cell cycle progression and in repressing cyclin D1 promoter activity. Collectively, our data indicate that merlin exerts its antiproliferative effect, at least in part, via repression of PAK-induced cyclin D1 expression, suggesting a unifying mechanism by which merlin inactivation might contribute to the overgrowth seen in both noninvasive and malignant tumors. 相似文献
12.
13.
Grassi G Schneider A Engel S Racchi G Kandolf R Kuhn A 《The journal of gene medicine》2005,7(9):1223-1234
BACKGROUND: Anti-proliferative drugs released from endo-vascular stents have substantially contributed to reduce in-stent restenosis rates in coronary arteries bearing single primary lesions by down-regulating coronary smooth muscle cell (CSMC) growth. However, the considerably lower drug efficacy shown in treatment of more complex coronary lesions suggests that alternative anti-proliferative approaches can be beneficial. Thus, we explored the use of hammerhead ribozymes as tools to knock down cyclin E and E2F1, two potent activators of cell proliferation which cooperate to promote the G1 to S phase transition. METHODS: Two ribozymes, one directed against cyclin E and the other against E2F1 mRNAs, were delivered by liposomes to cultured human CSMCs. The influences on cell proliferation were measured evaluating BrdU incorporation into newly synthesised DNA. The effects on cell cycle phase distribution were determined by BrdU and 7-aminoactinomycin D incorporation into DNA. RESULTS: Both ribozymes exhibited a sequence-specific and dose-dependent reduction in BrdU incorporation, which, at a concentration of 280 nM, persisted up to 4 days after transfection of CSMCs. A combined administration of the two ribozymes (210+210 nM) resulted in a more pronounced decrease in BrdU incorporation compared to the administration of an equimolar amount (420 nM) of each of them. Finally, both ribozymes induced a significant (P<0.05) reduction in S phase cells with a concomitant increase of G1/G0 and G2-M phase cells, compared to controls. CONCLUSIONS: The ribozymes selected represent potent tools to prevent CSMC proliferation, especially when administered together, and thus are ideal candidates for in vivo application. 相似文献
14.
Fu-Ming Tsai Chang-Chieh Wu Rong-Yaun Shyu Chun-Hua Wang Shun-Yuan Jiang 《Journal of biomedical science》2011,18(1):88
Background
The tazarotene-induced gene 1 (TIG1) is a putative tumor suppressor gene. We have recently demonstrated both TIG1A and TIG1B isoforms inhibited cell growth and induced the expression of G protein-coupled receptor kinase 5 (GRK5) in colon cancer cells. Because elevated prostaglandin E2 (PGE2) signaling plays a significant role in colorectal carcinogenesis, the objective of this study was to explore the effect of TIG1 on PGE2-induced cellular proliferation and signaling in colon cancer cells. 相似文献15.
16.
17.
《Cell cycle (Georgetown, Tex.)》2013,12(24):4193-4194
Comment on: Blanchet E, et. Nat Cell Biol 2011; 13:1146-52. 相似文献
18.
miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein 总被引:1,自引:0,他引:1
Dar AA Majid S de Semir D Nosrati M Bezrookove V Kashani-Sabet M 《The Journal of biological chemistry》2011,286(19):16606-16614
MicroRNAs (miRNAs) regulate gene expression by repressing translation or directing sequence-specific degradation of complementary mRNA. Here, we report that expression of miR-205 is significantly suppressed in melanoma specimens when compared with nevi and is correlated inversely with melanoma progression. miRNA target databases predicted E2F1 and E2F5 as putative targets. The expression levels of E2F1 and E2F5 were correlated inversely with that of miR-205 in melanoma cell lines. miR-205 significantly suppressed the luciferase activity of reporter plasmids containing the 3'-UTR sequences complementary to either E2F1 or E2F5. Overexpression of miR-205 in melanoma cells reduced E2F1 and E2F5 protein levels. The proliferative capacity of melanoma cells was suppressed by miR-205 and mediated by E2F-regulated AKT phosphorylation. miR-205 overexpression resulted in induction of apoptosis, as evidenced by increased cleaved caspase-3, poly-(ADP-ribose) polymerase, and cytochrome c release. Stable overexpression of miR-205 suppressed melanoma cell proliferation, colony formation, and tumor cell growth in vivo and induced a senescence phenotype accompanied by elevated expression of p16INK4A and other markers for senescence. E2F1 overexpression in miR-205-expressing cells partially reversed the effects on melanoma cell growth and senescence. These results demonstrate a novel role for miR-205 as a tumor suppressor in melanoma. 相似文献
19.