首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Chirality》2017,29(6):304-314
S‐naproxen by enantioselective hydrolysis of racemic naproxen methyl ester was produced using immobilized lipase. The lipase enzyme was immobilized on chitosan beads, activated chitosan beads by glutaraldehyde, and Amberlite XAD7. In order to find an appropriate support for the hydrolysis reaction of racemic naproxen methyl ester, the conversion and enantioselectivity for all carriers were compared. In addition, effects of the volumetric ratio of two phases in different organic solvents, addition of cosolvent and surfactant, optimum pH and temperature, reusability, and inhibitory effect of methanol were investigated. The optimum volumetric ratio of two phases was defined as 3:2 of aqueous phase to organic phase. Various water miscible and water immiscible solvents were examined. Finally, isooctane was chosen as an organic solvent, while 2‐ethoxyethanol was added as a cosolvent in the organic phase of the reaction mixture. The optimum reaction conditions were determined to be 35 °C, pH 7, and 24 h. Addition of Tween‐80 in the organic phase increased the accessibility of immobilized enzyme to the reactant. The optimum organic phase compositions using a volumetric ratio of 2‐ethoxyethanol, isooctane and Tween‐80 were 3:7 and 0.1% (v /v/v), respectively. The best conversion and enantioselectivity of immobilized enzyme using chitosan beads activated by glutaraldehyde were 0.45 and 185, respectively.  相似文献   

2.
The low substrate specificity of alcohol oxidase from Pichia pastoris makes this enzyme system of potential biotechnological interest. Whole cells of Pichia pastoris are able to oxidize benzyl alcohol to benzaldehyde in aqueous reaction media. The low water solubility of the reactant and product of this bioconversion, combined with the ability of both to strongly inhibit the reaction, favor the use of nonaqueous reaction fluids. Purified alcohol oxidase was shown to function in a number of 2-phase reaction systems of varied aqueous to organic phase ratios (0.01-0.05 v/v). The apparent V(max) and K(m) were 5.26 g/Lh and 7.41 g/L respectively, for the oxidation of benzyl alcohol to benzaldehyde in hexane containing 3% aqueous phase. The volume of the aqueous phase had a strong effect on the reaction, with an aqueous: organic ratio of 3-5% found to be optimum. The enzyme could be firmly immobilized on DEAE-Biogel (Biorad) to enhance stability and biocatalyst recovery.  相似文献   

3.
Summary Organic solvents have sometimes been used to increase the solubility of water insoluble substrates for steroid transformation using immobilized whole cells, even though the cell viability is often damaged. Polymeric surfactants which form micelles in aqueous solutions could be used instead of organic solvents to solubilize the steroid. We have successfully utilized this approach by employing a poly(dimethyl siloxane)-poly(ethyleneoxide) (PDMS-PEO) block copolymer surfactant to enhance conversion of hydrocortisone to prednisolone by immobilizedArthrobacter simplex cells, without deactivation of the immobilized cells.  相似文献   

4.
Enzymatic reactions in non-aqueous media have been shown to be effective in carrying out chemical transformation where the reactants are insoluble in water or water is a byproduct limiting conversion. Ionic liquids, liquid organic salts with infinitesimal vapor pressure, are potentially useful alternatives to organic solvents. It is known that the thermodynamic water activity is an important variable affecting the activity of enzymes in non-aqueous solvents. This study investigated the influence of water activity on the esterification of geraniol with acetic acid in ionic liquid [bmim]PF6 catalyzed by immobilized Candida antarctica lipase B. The conversion of geraniol in [bmim]PF6 was significant although the reaction rate was slower than in organic solvents. The profile of initial reaction rate-water activity was determined experimentally, and differed from the data reported for other non-aqueous solvents. A maximum in the initial reaction rate was found at aw = 0.6. The pseudo reaction equilibrium constant, Kx, was measured experimentally for the reaction. The average value of Kx in [bmim]PF6 was 12, 20-fold lower than the value reported for the same system in hexane.  相似文献   

5.
Partially purified Trichoderma reesei RUT-C30 acetyl esterase preparation was found to catalyze acyl transfer reactions in organic solvents, mixtures of organic solvents with water and even in water. Using different acyl donors, the best results for acetyl transfer in water were obtained using vinyl acetate. As acetyl acceptors, a variety of hydroxyl bearing compounds in aqueous solutions were used. Degree of conversion and the number of newly formed acetates varied according to the acceptor used. Conversions over 50% were observed for the majority of several common monosaccharides, their methyl and deoxy derivatives and oligosaccharides. In several cases, the transesterification reaction exhibited strict regioselectivity, leading to only one acetyl derivative. Preparative potential of the transesterification in water was demonstrated by acetylation of methyl β- -glucopyranoside, 4-nitrophenyl β- -glucopyranoside and kojic acid, yielding 56.4% of methyl 3-O-acetyl β- -glucopyranoside, 70.2% of 4-nitrophenyl 3-O-acetyl β- -glucopyranoside and 30.9% of 7-O-acetyl-kojic acid as the only reaction products.

This enzymatically catalyzed transacetylation in water, which is applied to transformation of saccharides for the first time, opens a new area in chemoenzymatic synthesis. Its major advantages are simplicity, highly regioselective esterification of polar compounds, high yields, low enzyme consumption and elimination of the need to use toxic organic solvents.  相似文献   


6.
Enzymatic production of methyl esters (biodiesel) by methanolysis of palm oil in presence and absence of organic solvent was investigated using Candida antarctica lipase immobilized on acrylic resin as a biocatalyst. Although, at least molar equivalent of methanol (methanol-palm oil ratio 3:1) is required for the complete conversion of palm oil to methyl esters, lipase catalyzed methanolysis of palm oil in absence of organic solvent was poisoned by adding more than 1/3 molar equivalent of methanol. The use of polar organic solvents prevented the lipase to be poisoned in methanolysis with a molar equivalent of methanol, and tetrahydrofuran (THF) was found to be the most effective. The presence of water in methanolysis of palm oil both in presence and absence of THF inhibited the reaction rate but this inhibition was considerably low in THF containing system. The palm oil-lipase (w/w) ratio significantly influenced the activity of lipase and the optimal ratio in presence and absence of THF was 100 and 50, respectively.  相似文献   

7.
Organic solvents are widely used in biotransformation systems. There are many efforts to reduce the consumption of organic solvents because of their toxicity to the environment and human health. In recent years, several groups have started to explore novel organic solvents called room temperature ionic liquids in order to substitute conventional organic solvents. In this work, lipase-catalyzed transesterification in several uni-and bi-phasic systems was studied. Two representative hydrophobic ionic liquids based on 1-butyl-3-methylimidazolum coupled with hexafluorophosphate ([BMIM][PF6]) and bis[(trifluoromethylsulfonyl) imide] ([BMIM] [Tf2N]) were employed as reaction media for the transesterification ofn-butanol. The commercial lipase, Novozym 435, was used for the transesterification reaction with vinyl acetate as an acyl donor, The conversion yield was increased around 10% in a water/[BMIM][Tf2N], bi-phasic system compared with that in a water/hexane system. A higher distribution of substrates into the water phase is believed to enhance the conversion yield in a water/[BMIM][Tf2N] system. Partion coefficients of the substrates in the water/[BMIM][Tf2N] bi-phasic system were higher than three times that found in the water/hexane system, while n-butyl acetate showed a similar distribution in both systems. Thus, RTILs appear to be a promising substitute of organic solvents in some biotransformation systems.  相似文献   

8.
The bovine trypsin-catalyzed synthesis of N-alpha-benzoyl-DL-arginine esters from N-benzoyl-DL-arginine were studied in various organic solvents. Trypsin was immobilized to polyvinyl alcohol (PVA) by adsorption from its aqueous solutions. Immobilized enzyme showed higher catalytic activities than free enzyme for amino acid esterification in ethanol. The yield of ester is strongly dependent upon the PVA/trypsin ratio and water content in the reaction medium. The rate and equilibrium constant of the ester formation reaction are also dependent on water content.  相似文献   

9.
The catalytic efficiencies of native subtilisin, its noncovalent complex with polyacrylic acid, and the subtilisin covalently immobilized in a cryogel of polyvinyl alcohol were studied in the reaction of peptide coupling in mixtures of organic solvents with a low water content in dependence on the medium composition, reaction time, and biocatalyst concentration. It was established that, in media with a DMF content > 80%, the synthase activity of modified subtilisins is higher than that of the native subtilisin. The use of N-acylpeptides with a free carboxyl group was found to be possible in organic solvents during the enzymatic synthesis catalyzed by both native and immobilized subtilisin. A series of tetrapeptide p-nitroanilides of the general formula Z-Ala-Ala-Xaa-Yaa-pNA (where Xaa is Leu, or Glu and Yaa is Phe or Asp) was obtained in the presence of immobilized enzyme in yields of 70-98% in DMF-MeCN without any activation of the carboxyl component and without protection of side ionogenic groups of polyfunctional amino acids.  相似文献   

10.
Biotransformations catalyzed by free and immobilized enzymes have been carried out in aqueous suspensions with up to 25% (w/w) precipitated substrate or product. For the kinetically controlled synthesis of N-Acetyl-Tyr-Arg-NH(2) with up to 0.8 M insoluble activated substrate N-Acetyl-TyrOEt catalyzed by alpha-chymotrypsin (EC3.4.21.1) the dipeptide yield was found to be >90%. This and the space-time yields were higher than those observed for one-phase aqueous systems and much higher than in systems where the insoluble substrate had been solubilized by addition of organic solvents. In the equilibrium controlled hydrolysis of 0.4 M D-phenylglycine-amide catalyzed by immobilized penicillin amidase (EC 3.5.1.11) the product precipitates. The enzyme immobilized in the support with the smallest pores could be reused without reduction in the rate due to precipitation in the pores. This decreases the number of immobilized enzyme molecules that can be used as biocatalysts. The latter was observed for supports with larger pores as the solubility decreases with increasing particle size. These results demonstrate that biotransformations with insoluble substrates or products using free or immobilized enzymes can be easily carried out in aqueous two-phase systems, without organic solvents, provided that the pore sizes of the supports are sufficiently small and that the rate of mass transfer from the precipitated substrate is large. The latter increases with decreasing particle size. (c) 1995 John Wiley & Sons, Inc.  相似文献   

11.
The ability of hydrolases to catalyze perhydrolysis, i.e. lysis of acyl substrates with hydrogen peroxide to form peroxycarboxylic acids, has been investigated. Lipases, esterases and cholinesterases were found to catalyze perhydrolysis but the preference of the enzymes for hydrogen peroxide relative to water as nucleophile was only 10-100 fold, even in the best cases. Hence, perhydrolysis proceeds with a very low efficiency in aqueous systems. Furthermore, all lipases, esterases and cholinesterases tested degrade peroxycarboxylic acids to the corresponding carboxylic acid and hydrogen peroxide. This reaction is most pronounced in the case of lipases while less so for cholinesterases. Consequently, cholinesterases are superior to the other hydrolases studied in catalyzing net formation of peracids in aqueous systems. In organic solvents, immobilized lipases efficiently catalyze formation of peracids from either triglycerides or the parent carboxylic acid. Proteases and phospholipase A-2 were found to neither degrade peracids nor catalyze perhydrolysis of carboxylic esters or phospholipids, respectively.  相似文献   

12.
Engineering biocatalytic systems in organic media with low water content   总被引:6,自引:0,他引:6  
The use of organic media in biocatalysis stems from the fact that in many cases biocatalytic processes can hardly be conducted (if at all) in aqueous solutions because of extremely low solubilities of substrates and/or unfavorable shift of the reaction equilibrium in water. The growing interest in this biotechnological area that has sprung up over the past few years has resulted in various approaches to enzyme stabilization against organic solvents. Thus, the main goal of the present review is to formulate a comprehensive classification of numerous successful nonaqueous biocatalytic systems based on a few fundamental principles. Typical examples are considered, along with the advantages and drawbacks inherent in each of the approaches discussed.  相似文献   

13.
Summary Lipase fromCandida rugosa was immobilized by adsorption on three supports which could contain water available for the hydrolysis of olive oil in a reverse phase system. To select the most suitable solvent for this system, the effect of organic solvents on the stability and catalytic activity of immobilized lipase for the hydrolysis reaction has been examined. The results revealed that isooctane was superior to any other solvents tested in this study for enzymatic fat splitting in a reverse phase system. Also the effect of the solvent polarity on the hydrolysis of olive oil has been examined in detail using various organic solvents mixed with an equivolume of isooctane. It was found that the hydrolysis of olive oil by immobilized lipase was markedly affected by the polarity of reaction solvents.  相似文献   

14.
Enzymatic transesterification of guanosine having low solubility against organic solvent was examined. For the transesterification between guanosine and divinyl adipate catalyzed by alkaline protease from Bacillus (Bioprase), DMSO was added to DMF to increase the solublility of the nucleoside, and the conversion rate of guanosine to the vinyl guanosine ester was less than 30%. To overcome the reversible inactivation of enzyme by hydrophilic organic solvents, the reaction was carried out with 10% (v/v) water. The transesterification reaction was effectively catalyzed in DMF/DMSO in the presence of water and the conversion rate increased ca. 70% after 7 d reaction. The result shows that the water effect of Bioprase would be a useful method for the synthesis of low solublility nucleoside esters.  相似文献   

15.
The catalytic efficiencies of native subtilisin, its noncovalent complex with polyacrylic acid, and the subtilisin covalently immobilized in a cryogel of polyvinyl alcohol were studied in the reaction of peptide coupling in mixtures of organic solvents with a low water content in dependence on the medium composition, reaction time, and biocatalyst concentration. It was established that, in media with a DMF content >80%, the synthase activity of modified subtilisins is higher than that of the native subtilisin. The use of N-acylpeptides with a free carboxyl group was found to be possible in organic solvents during the enzymatic synthesis catalyzed by both native and immobilized subtilisin. A series of tetrapeptide p-nitroanilides of the general formula Z-Ala-Ala-Xaa-Yaa-pNA (where Xaa is Leu, Lys, or Glu and Yaa is Phe or Asp) was obtained in the presence of immobilized enzyme in yields of 70–98% in DMF–MeCN without any activation of the carboxyl component and without protection of side ionogenic groups of polyfunctional amino acids.  相似文献   

16.
The potentials of using organic reaction media in biotechnological conversions have already been demonstrated in several experimental studies. Examples of possible advantages are: possibility of higher substrate and/or product concentrations, favorable shift of reaction equilibria, reduced substrate and/or product inhibition, and facilitated product recovery. Especially water/organic solvent two-phase systems seem to possess several of these advantages. The solvent type will highly affect kinetics and stability of the (immobilized) biocatalyst, solubility and partitioning of reactants/products, and product recovery. Therefore the solvent choice can have a large influence on the economics of the two-liquid-phase biocatalytic process. Immobilization of the biocatalyst may be useful to provide protection against denaturating solvent effects. The polarity of the employed support material will also be decisive for the partitioning of substrates and products among the various phases.

A classification of biphasic systems, which is based on the possible types of theoretical concentration profiles and aqueous phase configurations, is discussed. Reversed micelles and aqueous two-liquid-phase systems can be considered as special cases. The design of two-liquid-phase bioreactors is dependent on the state of the biocatalyst, free or immobilized, and on the necessity for emulsification of one of the two liquid phases in the other. Many mass-transfer resistances, e.g. across the liquid/liquid interface, in the aqueous phase, across the liquid/solid interface, and in the biocatalyst phase, can limit the overall reaction rate. The epoxidation of alkenes in water/solvent two-phase systems is discussed to give an example of the scope of biotechnological processes that is obtained by using organic media. Finally, a design calculation of a packed-bed organic-liquid-phasel immobilized-biocatalyst reactor for the epoxidation of propene is given to illustrate some of the above aspects.  相似文献   


17.
Using free and immobilized whole cells of Pichia pastoris, the biocatalytic oxidation of benzyl alcohol was investigated in different two-phase systems. This reaction was strongly influenced by both the substrate and product inhibitions, and the production rate of benzaldehyde in the aqueous system became maximum at the initial substrate concentration of ca. 29 g/L with the aldehyde formation less than 4 to 5 g/L even after a longer reaction period. The reaction rates in the two-liquid phase systems were predominantly determined by the partitioning behaviors of the substrate and product between the two phases rather than by enzyme deactivation by the organic solvents. In the two-liquid phase systems, consequently, the organic solvent acted as a reservior to reduce these inhibitory effects, and it was essential to select the organic solvent providing the optimal partitioning of the substrate into the aqueous phase as well as the preferential extraction of the product into the organic phase. The whole cells immobilized in a mixed matrix composed of silicone polymer [>50% (v/v)] and Ca alginate gel (<50%) worked well in the xylene and decane media, providing comparable activities with the free cells. The production rate of aldehyde was also influenced by the solute partitioning into the hydrophilic alginate phase where the cells existed. (c) 1994 John Wiley & Sons, Inc.  相似文献   

18.
We have examined enzymes in nearly anhydrous organic solvents spanning a wide range of dielectric constants using a combination of electron paramagnetic resonance (EPR) spectroscopy, molecular dynamics simulations, high-pressure kinetic studies and the electrostatic model of Kirkwood. This approach enabled us to investigate the relationship between catalytic activity, protein flexibility and solvent polarity for an enzymatic reaction proceeding through a highly polar transition state in the near absence of water. Further insights into water-protein interactions and the involvement of water in enzyme structure and function have been obtained by EPR and multinuclear nuclear magnetic resonance studies of enzymes suspended and immobilized in organic solvents with and without added water. In these systems, correlations were observed between the water content and enzyme activity, flexibility, and active-site polarity, although the structural properties of suspended and immobilized enzymes differed markedly. These results have helped to elucidate the role of water in molecular events at the enzymic active site leading to improved biocatalysis in low-water environments.  相似文献   

19.
Enzymatic hydrolysis conducted in a medium composed of solely substrate is considered to resolve racemic ketoprofen esters. In a system composed of two components, the pure liquid substrate (organic phase) and water (aqueous phase), hydrolysis products can be efficiently removed from the reaction mixtures. Accordingly, in this study we designed a solvent-free two-phase system for the enantioselective enzymatic hydrolysis of ketoprofen esters. In order to further optimize this system, the influences of various factors, such as the pH of the aqueous phase, temperature, enzyme content, and the alcohol chain length of esters, were examined on conversion and enantiomeric excess. 1N NaHCO3 was identified as the most efficient aqueous phase for the extraction of ketoprofen. Changes in the amount of enzyme did not significantly affect the maximum conversion or the enantiomeric excess. On the other hand, ketoprofen esters with shorter alcohol chains displayed higher initial reaction rates and conversions in solventless media. In the case of ketoprofen propyl ester, for example, the productivity of the solvent-free two-phase system was about 10–100 times higher than that obtained to date for ketoprofen esterification with alcohols in organic solvents. The enantioselectivities obtained in solvent-free media were similar to those obtained for the enantioselective esterification of ketoprofen in organic solvents.  相似文献   

20.
The stability of biocatalysis in systems containing organic solvents is reviewed. Among the examples presented are homogeneous mixtures of water and water-miscible organic solvents, aqueous/organic two-phase systems, solid biocatalysts suspended in organic solvents, enzymes in reverse micelles and modified enzymes soluble in water immiscible solvents. The stability of biocatalysts in organic solvents depends very much on the conditions. The hydrophobicity or the polarity of the solvent is clearly of great importance. More hydrophobic solvents (higher log P values) are less harmful to enzymes than less hydrophobic solvents. The water content of the system is a very important parameter. Some water is essential for enzymatic activity; however, the stability of enzymes decreases with increasing water content. Mechanisms of enzyme inactivation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号