首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The amounts of the volatile acids produced from thereonine, valine, leucine and isoleucine by growing cultures of clostridia have been measured. The species used were Clostridium sporogenes; C. caloritolerans; C. botulinum proteolytic type A; C. botulinum proteolytic type B; C. botulinum proteolytic type F; C. botulinum proteolytic type G; C. putrificum; C. difficile; C. ghoni; C. bifermentans; C. sordellii; C. mangenoti; C. cadaveris; C. lituseburense; C. propionicum; C. sticklandii; C. scatologenes; C. subterminale; C. putrefaciens; C. histolyticum; C. tetanomorphum; C. limosum; C. lentoputrescens; C. tetani; C. melanomenatum; C. cochlearium; C. sporospheroides. Most of the species tested gave increased yields of propionic acid when grown in the threonine medium; in addition, some species resembled C. propionicum and produced n-butyric acid when grown in this medium. C. histolyticum produced only acetic acid in the basal medium; all seven strains of this species produced more acetic acid when grown in the threonine medium than in the basal medium. Species which oxidize valine to iso-butyric acid also oxidize leucine to 3-methyl butyric acid and isoleucine to 2-methylbutyric acid. The iso-caproic fraction produced by some species is shown to be derived from leucine. The identitity of the branched-chain acids produced by C. sporogenes has been confirmed by gas liquid chromatography/mass spectrometry.Abbreviations GLC gas liquid chromatography - RCM reinforced clostridial medium - VFA volatile fatty acid  相似文献   

2.
Summary In mud samples naturally contaminated with Clostridium botulinum type C, other types cannot be recovered when incubated at 37°C. At incubation temperatures equal to or lower than 30°C and in the presence of type E, Clostridium botulinum type C cannot always be detected. The use of two incubation temperatures to increase the probability of detecting all types of Clostridium botulinum can therefore be recommended.  相似文献   

3.
Summary The behaviour of spores of Clostridium botulinum type A and proteolytic C. botulinum type B has been studied in cooked meat medium at 10°C, 12°C, 15°C, and 20°C, using mixed cultures (9 groups of in total 41 strains) and pure cultures (41 strains).At 10°C a decrease of 1–1.5 log cycles for type B and of 2–4 log cycles for type A Clostridia was observed. Neither growth nor toxin formation could be demonstrated.At 12°C spores of some strains developed and formed toxin with 3–4 weeks, whereas other strains did not develop within 7 weeks.At 15°C growth and toxin formation could be observed within 1 week, whereas at 20°C toxin was formed mostly within 2 or 3 days. Incubation at 10°C prior to incubation at 20°C seemed to have some effect on the lag time.  相似文献   

4.
Of the seven amino acids required by Clostridium botulinum type E, tryptophan is the most essential and may provide the cell with nitrogen. The addition of excess tryptophan (10–20 mM) or other nitrogenous nutrients to minimal growth medium markedly decreased toxin formation but did not affect growth in C. botulinum type E. On the other hand, the addition of an enzymatic digest of casein (NZ Case) stimulated toxin formation and overcame repression by tryptophan. Immunoblots of proteins in culture fluids using antibodies to type E toxin indicated that tryptophan-repressed cultures produced less neurotoxin protein. Inhibitors of neurotoxin did not accumulate in cultures grown in minimal medium supplemented with high tryptophan. The results suggest that tryptophan availability in foods or in the intestine may be important for toxin formation by C. botulinum type E.  相似文献   

5.
Samples of green beans and mushrooms were inoculated with a toxigenic strain ofClostridium botulinum type A and incubated anaerobically at 37 °C. At various time intervals, the seeded food samples were tested for the presence of botulinal toxin andC. botulinum by an agar plating method and an enzyme-linked immunosorbent assay.C. botulinum type A that appeared as lipase-positive colonies on selective agar plates, and its elaborated toxin, were identified in all seeded food samples within 1 to 2 d. This procedure can be adapted for rapid screening of suspected food samples. This study was presented in part at the96th General Meeting of the American Society for Microbiology, New Orleans, Louisiana, May 19–23, 1996 (abstract no. P71). Part of the requirements for the MSc degree received by A. Rodriguez.  相似文献   

6.
The gene organization and nucleotide sequence of the type A and B BoNT-gene clusters in Clostridium botulinum strain NCTC 2916 were studied. The aim was to clarify the organization of genes within C. botulinum type A strains possessing an unexpressed BoNT/B gene. The BoNT/A-gene cluster includes genes encoding BoNT, NTNH and a part of P-47 (the gene for this protein was reported in strains of C. botulinum types E and F). Clustered with the silent BoNT/B gene were genes encoding NTNH, P-21 and HA-33. Sequencing analysis of the NTNHs revealed the presence of 471 amino acids identical in the type B and A gene clusters. This gene organization contrasts markedly with the purported organization in strain NCTC 2916 described by Henderson et al. (FEMS Microbiol. Lett. 140, 151–158). In type A(B) strain NCTC 2916, the neurotoxin gene is of type BoNT/A1 within a gene cluster that has identical organization to that found in BoNT/A2 type strains; these observations may be significant in establishing the origin of the BoNT-gene cluster. Received: 28 July 1997 / Accepted: 15 October 1997  相似文献   

7.
Botulinum neurotoxin type A, the most toxic substance known to mankind, is produced by Clostridium botulinum type A as a complex with a group of neurotoxin-associated proteins (NAPs) through polycistronic expression of a clustered group of genes. Hemagglutinin-33 (Hn-33) is a 33 kDa subcomponent of NAPs, which is resistant to protease digestion, a feature likely to be involved in the protection of the botulinum neurotoxin from proteolysis. In order to fully understand the function of Hn-33, large amounts of Hn-33 will be needed without dealing with biosafety risks to grow large cultures of C. botulinum. There are difficulties to clone the genes with the high A + T contents produced by C. botulinum. We report here for the first time using the Gateway technology to clone functional Hn-33 that has been expressed in E. coli. The yield of the recombinant Hn-33 was about 12 mg per liter of E. coli culture. The recombinant Hn-33 folds well in aqueous solution as shown with circular dichroism spectra, resists temperature-denaturation, is totally resistant to trypsin proteolysis despite the presence of cleavage sites on the molecular surface, and maintains its biological activities comparable to the native Hn-33 hemagglutination.  相似文献   

8.
A rapid, quantitative PCR assay (TaqMan assay) which quantifies Clostridium botulinum type E by amplifying a 280-bp sequence from the botulinum neurotoxin type E (BoNT/E) gene is described. With this method, which uses the hydrolysis of an internal fluoregenic probe and monitors in real time the increase in the intensity of fluorescence during PCR by using the ABI Prism 7700 sequence detection system, it was possible to perform accurate and reproducible quantification of the C. botulinum type E toxin gene. The sensitivity and specificity of the assay were verified by using 6 strains of C. botulinum type E and 18 genera of 42 non-C. botulinum type E strains, including strains of C. botulinum types A, B, C, D, F, and G. In both pure cultures and modified-atmosphere-packaged fish samples (jack mackerel), the increase in amounts of C. botulinum DNA could be monitored (the quantifiable range was 102 to 108 CFU/ml or g) much earlier than toxin could be detected by mouse assay. The method was applied to a variety of seafood samples with a DNA extraction protocol using guanidine isothiocyanate. Overall, an efficient recovery of C. botulinum cells was obtained from all of the samples tested. These results suggested that quantification of BoNT/E DNA by the rapid, quantitative PCR method was a good method for the sensitive assessment of botulinal risk in the seafood samples tested.  相似文献   

9.
Sharma  Arti  Ponmariappan  S.  Rani  Sarita  Alam  S. I.  Shukla  S. 《Biotechnology letters》2021,43(5):1019-1036
Objectives

To identify immunogenic proteins of C. botulinum type B secretome by immunoproteomic analysis.

Results

In the present study, an attempt was made to elucidate the vaccine candidates/diagnostic molecules against botulism using immuno proteomic approach. C. botulinum type B secretome was elucidated when it was grown in TPGY as well as CMM media. Predominant 51 proteins were identified in both the media using 2-DE and mass spectrometry analysis. 2D gels (CMM & TPGY) were probed with respected proteins mice antiserum and obtained 17 and 10 immunogenic proteins in TPGY as well as CMM media respectively. Hypothetical protein CLOSPO_00563, ornithine carbamoyl transferase, FlaA, molecular chaperone GroEL and secreted protease proteins were found as the common immuno dominant proteins in both media. Polyclonal Antibodies raised against C. botulinum types A and E showed cross-reactivity with secretome C. botulinum type B at the lowest dilution (1:1000) but did not show cross reactivity with highest dilution (1:30,000) with C. botulinum type B secretome. Polyclonal antibodies against C. botulinum type F secretome did not show cross reactivity with C. botulinum type B secretome.

Conclusions

Identified immunogenic proteins can be used as vaccine candidates and diagnostic markers for the infant and wound botulism but common immunogenic proteins may be the best vaccine candidate molecule for development of vaccine as well as diagnostic system against the infant and wound botulism.

  相似文献   

10.
Pulsed-field gel electrophoresis (PFGE) was applied to the study of the similarity of 55 strains of proteolytic Clostridium botulinum (C. botulinum group I) types A, AB, B, and F. Rare-cutting restriction enzymes ApaI, AscI, MluI, NruI, PmeI, RsrII, SacII, SmaI, and XhoI were tested for their suitability for the cleavage of DNA of five proteolytic C. botulinum strains. Of these enzymes, SacII, followed by SmaI and XhoI, produced the most convenient number of fragments for genetic typing and were selected for analysis of the 55 strains. The proteolytic C. botulinum species was found to be heterogeneous. In the majority of cases, PFGE enabled discrimination between individual strains of proteolytic C. botulinum types A and B. The different toxin types were discriminated at an 86% similarity level with both SacII and SmaI and at an 83% similarity level with XhoI. Despite the high heterogeneity, three clusters at a 95% similarity level consisting of more than three strains of different origin were noted. The strains of types A and B showed higher diversity than the type F organisms which formed a single cluster. According to this survey, PFGE is to be considered a useful tool for molecular epidemiological analysis of proteolytic C. botulinum types A and B. However, epidemiological conclusions based on PFGE data only should be made with discretion, since highly similar PFGE patterns were noticed, especially within the type B strains.  相似文献   

11.
The organization of the clusters of genes encoding proteins of the botulinum neurotoxin (BoNT) progenitor complex was elucidated in a strain of Clostridium botulinum producing type B and F neurotoxins. With PCR and sequencing strategies, the type B BoNT-gene cluster was found to be composed of genes encoding BoNT/B, nontoxic nonhemagglutinin component (NTNH), P-21, and the hemagglutinins HA-33, HA-17, and HA-70, whereas the type F BoNT-gene cluster has genes encoding BoNT/F, NTNH, P-47, and P-21. Comparative sequence analysis showed that BoNT/F in type BF strain 3281 shares highest homology with BoNT/F of non-proteolytic (group II) C. botulinum whereas NTNH and P-21 in the type F cluster of strain 3281 are more similar to the corresponding proteins in proteolytic (group I) type F C. botulinum. These findings indicate diverse evolutionary origins for genes encoding BoNT/F and its associated non-toxic proteins, although the genes are contiguous. By contrast, sequence comparisons indicate that genes encoding BoNT/B and associated non-toxic proteins in strain 3281 possess a similar evolutionary origin. It was demonstrated that the genes present in the BoNT/B gene cluster of this type BF strain show exceptionally high homology with the equivalent genes in the silent BoNT/B gene cluster of C. botulinum type A(B), possibly indicating their common ancestry. Received: 30 March 1998 / Accepted: 21 May 1998  相似文献   

12.
A nested PCR was developed for detection of the Clostridium botulinum type C1 toxin gene in sediments collected from wetlands where avian botulism outbreaks had or had not occurred. The C1 toxin gene was detected in 16 of 18 sites, demonstrating both the ubiquitous distribution of C. botulinum type C in wetland sediments and the sensitivity of the detection assay.  相似文献   

13.
Boticin B is a heat-stable bacteriocin produced by Clostridium botulinum strain 213B that has inhibitory activity against various strains of C. botulinum and related clostridia. The gene encoding the bacteriocin was localized to a 3.0-kb HindIII fragment of an 18.8-kb plasmid, cloned, and sequenced. DNA sequencing revealed the boticin B structural gene, btcB, to be an open reading frame encoding 50 amino acids. A C. botulinum strain 62A transconjugant containing the HindIII fragment inserted into a clostridial shuttle vector expressed boticin B, although at much lower levels than those observed in C. botulinum 213B. To our knowledge, this is the first demonstration and characterization of a bacteriocin from toxigenic group I C. botulinum.  相似文献   

14.
Thirty-one soil samples were examined for the presence of organisms capable of inhibiting growth and toxin production of strains of Clostridium botulinum type A. Such organisms were found in eight samples of soil. Inhibiting strains of C. perfringens were found in five samples, of C. sporogenes in three and of Bacillus cereus in three. Three of the C. perfringens strains produced an inhibitor effective on all 11 strains of C. botulinum type A against which they were tested, seven of eight proteolytic type B strains, one nonproteolytic type B strain, five of nine type E strains and all seven type F strains, whether proteolytic or nonproteolytic. They did not inhibit any of 26 type C strains, 6 type D strains, 4 type E strains, or 24 C. sporogenes strains. In mixed culture, an inhibitor strain of C. perfringens repressed growth and toxin production by a C. botulinum type A strain even though it was outnumbered by the latter about 40 times. It also repressed growth and toxin production of C. botulinum in mixed culture of soils in which this latter organism naturally occurred when cooked meat medium but not when trypticase medium was used.  相似文献   

15.
The end products of the metabolism of aromatic amino acids by clostridia   总被引:16,自引:0,他引:16  
The end products of the metabolism of phenylalanine, tyrosine and tryptophan by growing cultures of clostridia have been identified. The species used were Clostridium aminovalericum; C. bifermentans; C. botulinum proteolytic type A; C. botulinum proteolytic type B; C. cochlearium; C. difficile; C. ghoni; C. histolyticum; C. lentoputrescens; C. limosum; C. lituseburense; C. malenomenatum; C. mangenoti; C. propionicum; C. putrefaciens; C. sordellii; C. sporogenes; C. sporosphaeroides; C. sticklandii; C. subterminale; C. tetani; C. tetanomorphum. The mixture of aromatic compounds formed, which depended upon the species, included phenyl acetic acid, phenyl propionic acid, phenyl lactic acid, phenol, p-cresol, p-hydroxy phenyl acetic acid, p-hydroxy phenyl propionic acid, indole, indole acetic acid and indole propionic acid.Abbreviation GLC gas liquid chromatography  相似文献   

16.
Germ-free mice, tested more than two weeks after removing their cecum, were at least 104 times more resistant than controls to intestinal colonization byClostridium botulinum type A or B. Histologic examinations were done with the cecum and colon taken fromC. botulinum-monoassociated mice. Specimens from mice with severe botulism had normal appearance. In specimens from chronically monoassociated mice, the pathogen was in the lumen, but not attached to the intestine. Scanning electron microscopy suggested a possible association of the pathogen with the mucous gel lining.  相似文献   

17.
Botulism is diagnosed by detecting botulinum neurotoxin and Clostridium botulinum cells in the patient and in suspected food samples. In this study, a multiplex PCR assay for the detection of Clostridium botulinum types A, B, E, and F in food and fecal material was developed. The method employs four new primer pairs with equal melting temperatures, each being specific to botulinum neurotoxin gene type A, B, E, or F, and enables a simultaneous detection of the four serotypes. A total of 43 C. botulinum strains and 18 strains of other bacterial species were tested. DNA amplification fragments of 782 bp for C. botulinum type A alone, 205 bp for type B alone, 389 bp for type E alone, and 543 bp for type F alone were obtained. Other bacterial species, including C. sporogenes and the nontoxigenic nonproteolytic C. botulinum-like organisms, did not yield a PCR product. Sensitivity of the PCR for types A, E, and F was 102 cells and for type B was 10 cells per reaction mixture. With a two-step enrichment, the detection limit in food and fecal samples varied from 10−2 spore/g for types A, B, and F to 10−1 spore/g of sample material for type E. Of 72 natural food samples investigated, two were shown to contain C. botulinum type A, two contained type B, and one contained type E. The assay is sensitive and specific and provides a marked improvement in the PCR diagnostics of C. botulinum.  相似文献   

18.
Uracil was used by growing cultures of Clostridium sporogenes, and by proteolytic strains of C. botulinum types A and B. Uracil was not used by C. bifermentans; C. botulinum, type B (non-proteolytic); C. botulinum, type F (non-proteolytic); C. botulinum, type E; C. butyricum; C. cochlearium; C. difficile; C. histolyticum; C. oedematiens, type A; C. paraputrificum; C. scatologenes; C. septicum; C. sordellii; C. sticklandii; C. tertium; C. tetani; C. tetanomorphum; C. welchii, types A, B, C, E and 4 untyped strains. The growth of C. sporogenes was not increased by uracil; it was reduced to dihydrouracil. Experiments with washed cells of C. sporogenes showed that the uracil-reducing system was inducible. Washed cell suspensions incubated under hydrogen with uracil, thymine, iso-barbituric acid, 5-amino uracil and cytosine consumed 1 mole H2/mole pyrimidine. The reduction product of cytosine was dihydrouracil indicating that it was deaminated before reduction. The reduction products of the remaining pyrimidines were the corresponding dihydro derivatives. Extracts of C. sporogenes reduced uracil in the presence of NADPH2 but not NADH2.  相似文献   

19.
For investigation of the genes of proteins associated in vivo with botulinum neurotoxin (BoNT), polymerase chain reaction (PCR) experiments were carried out with oligonucleotide primers designed to regions of the nontoxic-nonhemagglutinin (NTNH) gene ofClostridium botulinum type C. The primers were used to amplify a DNA fragment from genomic DNA ofC. botulinum types A, B, E, F, G and toxigenic strains ofClostridium barati andClostridium butyricum. The amplified product from all of these strains hybridized with an internal oligonucleotide probe, whereas all nontoxigenic clostridia tested gave no PCR product and showed no reaction with the probe. TheNTNH gene was shown to be located upstream of the gene encoding BoNT, thereby revealing a conserved structure for genes encoding the proteins of the M complex of the progenitor botulinum toxin in these organisms. The sequence of theNTNH gene of nonproteolyticC. botulinum type F was determined by PCR amplification and sequencing of overlapping cloned fragments. NTNH/F showed 71% and 61% identity with NTNH ofC. botulinum type E and type C respectively.  相似文献   

20.
Botulinum neurotoxins (BoNTs) are produced by phenotypically and genetically different Clostridium species, including Clostridium botulinum and some strains of Clostridium baratii (serotype F) and Clostridium butyricum (serotype E). BoNT-producing clostridia responsible for human botulism encompass strains of group I (secreting proteases, producing toxin serotype A, B, or F, and growing optimally at 37°C) and group II (nonproteolytic, producing toxin serotype E, B, or F, and growing optimally at 30°C). Here we report the development of real-time PCR assays for genotyping C. botulinum strains of groups I and II based on flaVR (variable region sequence of flaA) sequences and the flaB gene. Real-time PCR typing of regions flaVR1 to flaVR10 and flaB was optimized and validated with 62 historical and Canadian C. botulinum strains that had been previously typed. Analysis of 210 isolates of European origin allowed the identification of four new C. botulinum flaVR types (flaVR11 to flaVR14) and one new flaVR type specific to C. butyricum type E (flaVR15). The genetic diversity of the flaVR among C. botulinum strains investigated in the present study reveals the clustering of flaVR types into 5 major subgroups. Subgroups 1, 3, and 4 contain proteolytic Clostridium botulinum, subgroup 2 is made up of nonproteolytic C. botulinum only, and subgroup 5 is specific to C. butyricum type E. The genetic variability of the flagellin genes carried by C. botulinum and the possible association of flaVR types with certain geographical areas make gene profiling of flaVR and flaB promising in molecular surveillance and epidemiology of C. botulinum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号