首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accessory medulla, the circadian clock of the cockroach Leucophaea maderae, is abundant in neuropeptides. Among these neuropeptides are the FMRFamide-related peptides (FaRPs), which generally share the C-terminal RFamide. As a first step toward understanding the functional role of FaRPs in the circadian clock of the cockroach, immunocytochemistry with antisera against various FaRPs, MALDI-TOF mass spectrometry, and injections of two FaRPs combined with running-wheel assays were performed. Prominent FMRFamide-like immunoreactivity was found in maximally four soma clusters associated with the accessory medulla and in most neuropils of the protocerebrum. By MALDI-TOF mass spectrometry, various extended FMRFamides of the cockroach L. maderae were partially identified in thoracic perisympathetic organs, structures known to accumulate extended FMRFamides in insects. By mass match, several of these peptides were also detected in the accessory medulla. Injections of FMRFamide and Pea-FMRFa-7 (DRSDNFIRF-NH2) into the vicinity of the accessory medulla caused time-dependent phase-shifts of locomotor activity rhythms at circadian times 8, 18, and 4. Thus, our data suggest a role for the different FaRPs in the control of circadian locomotor activity rhythms in L. maderae.  相似文献   

2.
The cockroach Leucophaea maderae was the first animal in which lesion experiments localized an endogenous circadian clock to a particular brain area, the optic lobe. The neural organization of the circadian system, however, including entrainment pathways, coupling elements of the bilaterally distributed internal clock, and output pathways controlling circadian locomotor rhythms are only recently beginning to be elucidated. As in flies and other insect species, pigment-dispersing hormone (PDH)-immunoreac- tive neurons of the accessory medulla of the cockroach are crucial elements of the circadian system. Lesions and transplantation experiments showed that the endogeneous circadian clock of the brain resides in neurons associated with the accessory medulla. The accessory medulla is organized into a nodular core receiving photic input, and into internodular and peripheral neuropil involved in efferent output and coupling input. Photic entrainment of the clock through compound eye photoreceptors appears to occur via parallel, indirect pathways through the medulla. Light-like phase shifts in circadian locomotor activity after injections of γ-aminobutyric acid (GABA)- or Mas-allatotropin into the vicinity of the accessory medulla suggest that both substances are involved in photic entrainment. Extraocular, cryptochrome-based photoreceptors appear to be present in the optic lobe, but their role in photic entrainment has not been examined. Pigment-dispersing hormone-immunoreactive neurons provide efferent output from the accessory medulla to several brain areas and to the peripheral visual system. Pigment-dispersing hormone-immunoreactive neurons, and additional heterolateral neurons are, furthermore, involved in bilateral coupling of the two pacemakers. The neuronal organization, as well as the prominent involvement of GABA and neuropeptides, shows striking similarities to the organization of the suprachiasmatic nucleus, the circadian clock of the mammalian brain.  相似文献   

3.
In the cockroach Leucophaea maderae transplantation studies located the circadian pacemaker center, which controls locomotor activity rhythms, to the accessory medulla (AMe), ventromedially to the medulla of the brain’s optic lobes. The AMe is densely innervated via GABA- and manyfold peptide-immunoreactive neurons. They express ultradian action potential oscillations in the gamma frequency range and form phase-locked assemblies of synchronously spiking cells. Peptide application resulted in transient rises of extracellularly recorded activity. It remained unknown whether transient rises in spontaneous electrical activity as a possible indication of peptide release occur in the isolated circadian clock in a rhythmic manner. In extracellular glass electrode recordings of the isolated AMe in constant darkness, which lasted at least 12 h, the distribution of daytime-dependent changes in activity independently of the absolute action potential frequency was examined. Rapid, transient changes in activity preferentially occurred at the mid-subjective night, with a minimum at the middle of the subjective day, hinting the presence of circadian rhythms in the isolated circadian clock. Additionally, ultradian rhythms in activity change that are multiples of a fundamental 2 h period were observed. We hypothesize that circadian rhythms might originate from coupled ultradian oscillations, possibly already at the single cell level.  相似文献   

4.
The accessory medulla is the master circadian clock in the brain of the cockroach Leucophaea maderae and controls circadian locomotor activity. Previous studies have demonstrated that a variety of neuropeptides are prominent neuromediators in this brain area. Recently, members of the orcokinin family of crustacean neuropeptides have been identified in several insect species and shown to be widely distributed in the brain, including the accessory medulla. To investigate the possible involvement of orcokinins in circadian clock function, we have analyzed the distribution of orcokinin immunostaining in the accessory medulla of L. maderae in detail. The accessory medulla is densely innervated by approximately 30 orcokinin-immunoreactive neurons with cell bodies distributed in five of six established cell groups in the accessory medulla. Immunostaining is particularly prominent in three ventromedian neurons. These neurons have processes in a median layer of the medulla and in the internodular neuropil of the accessory medulla and send axonal fibers via the posterior optic commissure to their contralateral counterparts. Double-labeling experiments have revealed the colocalization of orcokinin immunostaining with immunoreactivity for pigment-dispersing hormone, FMRFamide, Mas-allatotropin, and γ-aminobutyric acid in two cell groups of the accessory medulla, but not in the ventromedian neurons or in the anterior and posterior optic commissure. Immunostaining in the ventromedian neurons suggests that orcokinin-related peptides play a role in the heterolateral transmission of photic input to the pacemaker and/or in the coupling of the bilateral pacemakers of the cockroach.This study was supported by the Deutsche Forschungsgemeinschaft, grant HO 950/9.  相似文献   

5.
Circadian locomotor activity rhythms of the cockroach Leucophaea maderae are driven by two bilaterally paired and mutually coupled pacemakers that reside in the optic lobes of the brain. Transplantation studies have shown that this circadian pacemaker is located in the accessory medulla (AMe), a small neuropil of the medulla of the optic lobe. The AMe is densely innervated by about 12 anterior pigment-dispersing-hormone-immunoreactive (PDH-ir) medulla (PDHMe) neurons. PDH-ir neurons are circadian pacemaker candidates in the fruitfly and cockroach. A subpopulation of these neurons also appears to connect both optic lobes and may constitute at least one of the circadian coupling pathways. To determine whether PDHMe neurons directly connect both accessory medullae, we injected rhodamine-labeled dextran as neuronal tracer into one AMe and performed PDH immunocytochemistry. Double-labeled fibers in the anterior, shell, and internodular neuropil of the AMe contralaterally to the injection site showed that PDH-ir fibers directly connect both accessory medullae. This connection is formed by three anterior PDHMe neurons of each optic lobe, which, thus, fulfill morphological criteria for a direct circadian coupling pathway. Our double-label studies also showed that all except one of the midbrain projection areas of anterior PDHMe neurons were innervated ipsilaterally and contralaterally. Thus, anterior PDHMe neurons seem to play multiple roles in generating circadian rhythms. They also deliver timing information output and perform mutual pacemaker coupling in L. maderae. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) grants STE 531/7-1, 2, 3, and Human Science Frontier  相似文献   

6.
Lesion and transplantation studies in the cockroach, Leucophaea maderae, have located its bilaterally symmetric circadian pacemakers necessary for driving circadian locomotor activity rhythms to the accessory medulla of the optic lobes. The accessory medulla comprises a network of peptidergic neurons, including pigment-dispersing factor (PDF)-expressing presumptive circadian pacemaker cells. At least three of the PDF-expressing neurons directly connect the two accessory medullae, apparently as a circadian coupling pathway. Here, the PDF-expressing circadian coupling pathways were examined for peptide colocalization by tracer experiments and double-label immunohistochemistry with antisera against PDF, FMRFamide, and Asn13-orcokinin. A fourth group of contralaterally projecting medulla neurons was identified, additional to the three known groups. Group one of the contralaterally projecting medulla neurons contained up to four PDF-expressing cells. Of these, three medium-sized PDF-immunoreactive neurons coexpressed FMRFamide and Asn13-orcokinin immunoreactivity. However, the contralaterally projecting largest PDF neuron showed no further peptide colocalization, as was also the case for the other large PDF-expressing medulla cells, allowing the easy identification of this cell group. Although two-thirds of all PDF-expressing medulla neurons coexpressed FMRFamide and orcokinin immunoreactivity in their somata, colocalization of PDF and FMRFamide immunoreactivity was observed in only a few termination sites. Colocalization of PDF and orcokinin immunoreactivity was never observed in any of the terminals or optic commissures. We suggest that circadian pacemaker cells employ axonal peptide sorting to phase-control physiological processes at specific times of the day.  相似文献   

7.
Extensive research has been carried out to understand how circadian clocks regulate various physiological processes in organisms. The discovery of clock genes and the molecular clockwork has helped researchers to understand the possible role of these genes in regulating various metabolic processes. In Drosophila melanogaster, many studies have shown that the basic architecture of circadian clocks is multi-oscillatory. In nature, different neuronal subgroups in the brain of D. melanogaster have been demonstrated to control different circadian behavioural rhythms or different aspects of the same circadian rhythm. Among the circadian phenomena that have been studied so far in Drosophila, the egg-laying rhythm is unique, and relatively less explored. Unlike most other circadian rhythms, the egg-laying rhythm is rhythmic under constant light conditions, and the endogenous or free-running period of the rhythm is greater than those of most other rhythms. Although the clock genes and neurons required for the persistence of adult emergence and activity/rest rhythms have been studied extensively, those underlying the circadian egg-laying rhythm still remain largely unknown. In this review, we discuss our current understanding of the circadian egg-laying rhythm in D. melanogaster, and the possible molecular and physiological mechanisms that control the rhythmic output of the egg-laying process.  相似文献   

8.
Increasing evidence indicates that the accessory medulla is the circadian pacemaker controlling locomotor activity rhythms in insects. A prominent group of neurons of this neuropil shows immunoreactivity to the peptide pigment-dispersing hormone (PDH). In Drosophila melanogaster, the PDH-immunoreactive (PDH-ir) lateral neurons, which also express the clock genes period and timeless, are assumed to be circadian pacemaker cells themselves. In other insects, such as Leucophaea maderae, a subset of apparently homologue PDH-ir cells is a candidate for the circadian coupling pathway of the bilaterally symmetric clocks. Although knowledge about molecular mechanisms of the circadian clockwork is increasing rapidly, very little is known about mechanisms of circadian coupling. The authors used a computer model, based on the molecular feedback loop of the clock genes in D. melanogaster, to test the hypothesis that release of PDH is involved in the coupling between bilaterally paired oscillators. They can show that a combination of all-delay- and all-advance-type interactions between two model oscillators matches best the experimental findings on mutual pacemaker coupling in L. maderae. The model predicts that PDH affects the phosphorylation rate of clock genes and that in addition to PDH, another neuroactive substance is involved in the coupling pathway, via an all-advance type of interaction. The model suggests that PDH and light pulses, represented by two distinct classes of phase response curves, have different targets in the oscillatory feedback loop and are, therefore, likely to act in separate input pathways to the clock.  相似文献   

9.
10.
This study examined whether the daily rhythms of locomotor activity and behavioural thermoregulation that have previously been observed in Australian sleepy lizards (Tiliqua rugosa) under field conditions are true circadian rhythms that persist in constant darkness (DD) and whether these rhythms show similar characteristics. Lizards held on laboratory thermal gradients in the Australian spring under the prevailing 12-hour light : dark (LD) cycle for 14 days displayed robust daily rhythms of behavioural thermoregulation and locomotor activity. In the 13-day period of DD that followed LD, most lizards exhibited free-running circadian rhythms of locomotor activity and behavioural thermoregulation. The predominant activity pattern displayed in LD was unimodal and this was retained in DD. While mean levels of skin temperature and locomotor activity were found to decrease from LD to DD, activity duration remained unchanged. The present results demonstrate for the first time that this species’ daily rhythm of locomotor activity is an endogenous circadian rhythm. Our results also demonstrate a close correlation between the circadian activity and thermoregulatory rhythms in this species indicating that the two rhythms are controlled by the same master oscillator(s). Future examination of seasonal aspects of these rhythms, may, however, cause this hypothesis to be modified.  相似文献   

11.
Robust self-sustained oscillations are a ubiquitous characteristic of circadian rhythms. These include Drosophila locomotor activity rhythms, which persist for weeks in constant darkness (DD). Yet the molecular oscillations that underlie circadian rhythms damp rapidly in many Drosophila tissues. Although much progress has been made in understanding the biochemical and cellular basis of circadian rhythms, the mechanisms that underlie the differences between damped and self-sustaining oscillations remain largely unknown. A small cluster of neurons in adult Drosophila brain, the ventral lateral neurons (LNvs), is essential for self-sustained behavioral rhythms and has been proposed to be the primary pacemaker for locomotor activity rhythms. With an LNv-specific driver, we restricted functional clocks to these neurons and showed that they are not sufficient to drive circadian locomotor activity rhythms. Also contrary to expectation, we found that all brain clock neurons manifest robust circadian oscillations of timeless and cryptochrome RNA for many days in DD. This persistent molecular rhythm requires pigment-dispersing factor (PDF), an LNv-specific neuropeptide, because the molecular oscillations are gradually lost when Pdf01 mutant flies are exposed to free-running conditions. This observation precisely parallels the previously reported effect on behavioral rhythms of the Pdf01 mutant. PDF is likely to affect some clock neurons directly, since the peptide appears to bind to the surface of many clock neurons, including the LNvs themselves. We showed that the brain circadian clock in Drosophila is clearly distinguishable from the eyes and other rapidly damping peripheral tissues, as it sustains robust molecular oscillations in DD. At the same time, different clock neurons are likely to work cooperatively within the brain, because the LNvs alone are insufficient to support the circadian program. Based on the damping results with Pdf01 mutant flies, we propose that LNvs, and specifically the PDF neuropeptide that it synthesizes, are important in coordinating a circadian cellular network within the brain. The cooperative function of this network appears to be necessary for maintaining robust molecular oscillations in DD and is the basis of sustained circadian locomotor activity rhythms.  相似文献   

12.
Robust self-sustained oscillations are a ubiquitous characteristic of circadian rhythms. These include Drosophila locomotor activity rhythms, which persist for weeks in constant darkness (DD). Yet the molecular oscillations that underlie circadian rhythms damp rapidly in many Drosophila tissues. Although much progress has been made in understanding the biochemical and cellular basis of circadian rhythms, the mechanisms that underlie the differences between damped and self-sustaining oscillations remain largely unknown. A small cluster of neurons in adult Drosophila brain, the ventral lateral neurons (LNvs), is essential for self-sustained behavioral rhythms and has been proposed to be the primary pacemaker for locomotor activity rhythms. With an LNv-specific driver, we restricted functional clocks to these neurons and showed that they are not sufficient to drive circadian locomotor activity rhythms. Also contrary to expectation, we found that all brain clock neurons manifest robust circadian oscillations of timeless and cryptochrome RNA for many days in DD. This persistent molecular rhythm requires pigment-dispersing factor (PDF), an LNv-specific neuropeptide, because the molecular oscillations are gradually lost when Pdf01 mutant flies are exposed to free-running conditions. This observation precisely parallels the previously reported effect on behavioral rhythms of the Pdf01 mutant. PDF is likely to affect some clock neurons directly, since the peptide appears to bind to the surface of many clock neurons, including the LNvs themselves. We showed that the brain circadian clock in Drosophila is clearly distinguishable from the eyes and other rapidly damping peripheral tissues, as it sustains robust molecular oscillations in DD. At the same time, different clock neurons are likely to work cooperatively within the brain, because the LNvs alone are insufficient to support the circadian program. Based on the damping results with Pdf01 mutant flies, we propose that LNvs, and specifically the PDF neuropeptide that it synthesizes, are important in coordinating a circadian cellular network within the brain. The cooperative function of this network appears to be necessary for maintaining robust molecular oscillations in DD and is the basis of sustained circadian locomotor activity rhythms.  相似文献   

13.
Circadian locomotor rhythms of Drosophila melanogaster are controlled by a neuronal circuit composed of approximately 150 clock neurons that are roughly classified into seven groups. In the circuit, a group of neurons expressing pigment-dispersing factor (PDF) play an important role in organizing the pacemaking system. Recent studies imply that unknown chemical neurotransmitter(s) (UNT) other than PDF is also expressed in the PDF-positive neurons. To explore its role in the circadian pacemaker, we examined the circadian locomotor rhythms of pdf-Gal4/UAS-TNT transgenic flies in which chemical synaptic transmission in PDF-positive neurons was blocked by expressed tetanus toxin light chain (TNT). In constant darkness (DD), the flies showed a free-running rhythm, which was similar to that of wild-type flies but significantly different from pdf null mutants. Under constant light conditions (LL), however, they often showed complex rhythms with a short period and a long period component. The UNT is thus likely involved in the synaptic transmission in the clock network and its release caused by LL leads to arrhythmicity. Immunocytochemistry revealed that LL induced phase separation in TIMELESS (TIM) cycling among some of the PDF-positive and PDF-negative clock neurons in the transgenic flies. These results suggest that both PDF and UNT play important roles in the Drosophila circadian clock, and activation of PDF pathway alone by LL leads to the complex locomotor rhythm through desynchronized oscillation among some of the clock neurons.  相似文献   

14.
The circadian systems of different insect groups are summarized and compared. Emphasis is placed on the anatomical identification and characterization of circadian pacemakers, as well as on their entrainment, coupling, and output pathways. Cockroaches, crickets, beetles, and flies possess bilaterally organized pacemakers in the optic lobes that appear to be located in the accessory medulla, a small neuropil between the medulla and the lobula. Neurons that are immunoreactive for the peptide pigment-dispersing hormone (PDH) arborize in the accessory medulla and appear to be important components of the optic lobe pacemakers. The neuronal architecture of the accessory medulla with associated PDH-immunoreactive neurons is best characterized in cockroaches, while the molecular machinery of rhythm generation is best understood in fruit flies. One essential component of the circadian clock is the period protein (PER), which colocalizes with PDH in about half of the fruit fly's presumptive pacemaker neurons. PER is also found in the presumptive pacemaker neurons of beetles and moths, but appears to have different functions in these insects. In moths, the pacemakers are situated in the central brain and are closely associated with neuroendocrine functions. In the other insects, neurons associated with neuroendocrine functions also appear to be closely coupled to the optic lobe pacemakers. Some crickets and flies seem to possess central brain pacemakers in addition to their optic lobe pacemakers. With respect to neuronal organization, the circadian systems of insects show striking similarities to the vertebrate circadian system. (Chronobiology International, 15(6), 567-594, 1998)  相似文献   

15.
16.
Circadian clocks include control systems for organizing daily behavior. Such a system consists of a time-keeping mechanism (the clock or pacemaker), input pathways for entraining the clock, and output pathways for producing overt rhythms in behavior and physiology. In Drosophila melanogaster, as in mammals, neural circuits play vital roles in all three functional subdivisions of the circadian system. Regarding the pacemaker, multiple clock neurons, each with cell-autonomous pacemaker capability, are coupled to each other in a network. The outputs of different sets of clock neurons in this network combine to produce the normal bimodal pattern of locomotor activity observed in Drosophila. Regarding input, multiple sensory modalities (including light, temperature, and pheromones) use their own circuitry to entrain the clock. Regarding output, distinct circuits are likely involved for controlling the timing of eclosion and for generating the locomotor activity rhythms. This review summarizes work on all of these circadian circuits, and discusses the broader utility of studying the fly's circadian system.  相似文献   

17.
Locomotor activity rhythms of the cockroach Leucophaea maderae are orchestrated by two bilaterally symmetric, mutually coupled, circadian pacemakers. They lie in the optic lobes of the brain and are confined to the accessory medulla (AMe), ventro-medially to the medulla. The AMe is innervated by approximately 12 pigment-dispersing hormone (PDH)-immunoreactive anterior medulla neurons (PDHMe), which are circadian pacemaker candidates in the fruitfly and the cockroach. We have developed a three-dimensional computer model of the AMe and associated structures as a framework for neuroanatomical studies. Our greatly improved understanding of this structure in space has allowed us further to subdivide the anterior PDHMe into three subgroups, i.e., large, medium-sized, and small anterior PDHMe. The synaptic connections of two of these subgroups have been examined within subcompartments of the AMe by light and electron microscopy. The large, intensely staining, anterior PDHMe contain medium-sized dense-core vesicles and form input and output synapses with profiles densely filled with clear vesicles primarily in the anterior and shell neuropil of the AMe. The medium-sized anterior PDHMe contain large dense-core vesicles and constitute input and output synapses either with profiles being densely filled with clear vesicles, or with profiles containing granular dense-core vesicles. The small, weakly staining anterior PDHMe belong to a morphological group different from the large and medium-sized PDHMe and cannot be further identified at the electron-microscopic level because of their weak PDH immunoreactivity.This work was supported by Deutsche Forschungsgemeinschaft (DFG) grants STE 531/7-1, 2, 3, and Human Science Frontier  相似文献   

18.
19.
Age-related division of labor in honeybees is associated with plasticity in circadian rhythms. Young nest bees care for brood around the clock with no circadian rhythms while older foragers have strong circadian rhythms that are used for sun compass navigation and for timing visits to flowers. Since juvenile hormone (JH) is involved in the coordination of physiological and behavioral processes underlying age-related division of labor in honey bees, we tested the hypothesis that JH influences the ontogeny of circadian rhythms and other clock parameters in young worker bees. Treatments with the JH analog methoprene or allatectomy did not influence the onset of rhythmicity, overall locomotor activity, or the free-running period of rhythmic locomotor behavior. There were, however, significant differences in the onset of rhythmicity, overall locomotor activity, and longevity between bees from different source colonies, suggesting that there is significant genetic variation for these traits. Our results suggest that JH does not coordinate all aspects of division of labor in bees and that coordination of task performance with circadian rhythms is probably mediated by other regulatory systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号