首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine whether the major influence of high salinity is caused by the osmotic component or by salinity-induced specific ion toxicity, we compared the effects of mannitol, sorbitol, NaCl and KCl (all in concentratuions corresponded to osmotic potential −1.0 MPa) on the antioxidant and anatomical responses of the apple rootstock MM 106 explants grown in the Murashige and Skoog (MS) medium. All the compounds had a significant influence on explant's mineral composition and reduced the leaf water content, whereas mannitol and salts decreased chlorophyll (Chl) content and increased proline content. Superoxide dismutase (SOD), peroxidase (POD) and non-enzymatic antioxidant activities as well as H2O2 content were increased in the leaves and stems. In addition, in the leaves of explants exposed to NaCl an additional Mn-SOD isoform was revealed, while specific POD isoforms were detected in the leaves and stems treated with NaCl or KCl. However, catalase activity was depressed in the salt-treated leaves. At the ultrastructural level, the NaCl-treated leaves had the thickest lamina, due to an extensive increase of the size of epidermal and mesophyll cells. Also, an increase of the relative volume of the intercellular spaces in response to NaCl was observed. The results suggest that Na accumulation is the first candidate for the distinct antioxidant and anatomical responses between saline and osmotically generated stress in the MM 106 explants.  相似文献   

2.
The effect of salinity on the non-enzymic and enzymic antioxidant activity, shoot proliferation and nutrient accumulation was studied in in vitro cultures of the rootstock CAB-6P (Prunus cerasus L.). Three concentrations (0, 30 and 60 mM) of NaCl or CaCl2 were added to a modified MS medium. Between the two salt treatments used, only the explants treated with CaCl2 presented significant decrease in growth parameters. The concentrations of Na+ and Cl in the explants treated with NaCl were increased, as NaCl in the culture medium increased. Furthermore, in the explants treated with CaCl2 the concentrations of Ca2+ and Cl were increased while that of K+ decreased, as CaCl2 concentration increased. The activity of peroxidase in leaves as well as the number of its anionic isoforms was increased under 30 mM CaCl2 as well as 60 mM NaCl or CaCl2. On the contrary, increasing salinity, from 0 to 60 mM CaCl2, resulted in a reduction of the catalase activity in leaves followed by disappearance of the only one catalase isoform that was detected in leaves (60 mM CaCl2). In the stems of the explants treated with NaCl the peroxidase activity was reduced. In the stems and leaves of the explants grown in saline substrate the non-enzymic antioxidant activity was significantly increased. The results suggest that the stems and leaves of CAB-6P explants presented variable antioxidant responses that were depended on the salt form used. The contribution of enzymic and non-enzymic protection mechanisms to the adaptation of CAB-6P explants under salinity stress is discussed.  相似文献   

3.
The use of in vitro shoot cultures to evaluate osmotic and salt tolerance and the effects of salt and mannitol in the medium on proline and sugar accumulation were investigated in two poplar species, P. euphratica and P. alba cv. Pyramidalis × P. tomentosa. Shoot length, leaf number, whole plant dry weight, and the accumulation of proline and total soluble sugars in leaves were quantified after 2 weeks. All P. euphratica plantlets survived at all levels of mannitol and NaCl, while the mortality of P. alba cv. Pyramidalis × P. tomentosa increased both at the mannitol and the NaCl treatments. A significant increase in proline accumulation was observed in both young and mature P. euphratica leaves at 200 mM mannitol and above, and at 150 mM NaCl and above. The total soluble sugar content increased in young P. euphratica leaves at 250 mM NaCl; however, it decreased in the mature leaves. Similar increases of the total soluble sugar content were not seen in P. alba cv. Pyramidalis × P. tomentosa plants in response to either mannitol or NaCl treatment. Our results suggest that accumulated proline and sugars promote osmotic and salt tolerance. The effects of accumulated proline and total soluble sugars on leaves are discussed in relation to growth and osmotic adjustment. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
以一年生钩藤实生苗为试材,通过连续土壤控水12 d盆栽试验,研究持续性土壤自然干旱对钩藤幼苗生长、抗逆生理指标及其主要药用成分含量的影响。结果表明:(1)随着干旱胁迫时间的延长,钩藤根和茎叶生物量以及叶片相对含水量(RWC)显著持续下降(P0.05),而根冠比、叶片丙二醛(MDA)含量及相对电导率(REC)逐渐升高。(2)随着干旱胁迫时间的延长,钩藤叶片叶绿素a、b含量先增高后下降,叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性先上升后下降,且POD活性最先达到峰值,CAT活性增幅最大;叶片中脯氨酸(Pro)、可溶性糖(SS)和可溶性蛋白(SP)含量逐渐升高,且Pro表现出更强的渗透调节能力。(3)钩藤幼苗叶片、主茎和带钩茎枝中钩藤碱与异钩藤碱含量随着干旱胁迫时间的延长而呈先增高后下降的趋势,响应时间先后顺序依次为叶片、主茎、带钩茎枝,生物碱含量由高到低依次为带钩茎枝、叶片、主茎。研究发现,在土壤持续自然干旱条件下,钩藤幼苗生长受到一定影响,但植株能通过提高其抗氧化酶活性和积累渗透调节物质来提高吸水和保水能力,有效抵御干旱逆境;且土壤自然干旱胁迫4~8 d有利于主要药效成分钩藤碱与异钩藤碱的积累;土壤相对含水量在42%~53%时,钩藤幼苗耐旱性较强且钩藤碱与异钩藤碱含量较高。  相似文献   

5.
郝汉  曹磊  陈伟楠  胡增辉  冷平生 《生态学报》2020,40(19):6897-6904
检测NaCl胁迫对槲树(Quercus dentata)幼苗离子平衡和生理生化特性的影响,为揭示槲树的耐盐机理,其在园林中的推广应用提供参考。以一年生槲树实生苗作为实验材料,经100、200、300 mmol/L的NaCl溶液浇灌处理30 d,测定不同时间的离子含量和生理生化指标变化。结果表明,随NaCl浓度的增加和处理的时间延长,槲树各指标表现出以下规律:(1)根茎叶积累大量Na+,引起离子毒害,导致叶片受损,根系Na+含量显著高于地上部分,这种补偿作用有助于减轻地上部分受到的损害;(2)各部分K+含量降低,根部较茎叶更为显著,导致Na+/K+明显升高;(3)Ca2+由根部向地上部分转运,在叶片中浓度显著增加,有助于建立新的离子稳态;(4)Mg2+含量总体上呈降低趋势;(5)叶片含水量逐渐降低,丙二醛含量和相对电导率逐步升高,且在重度胁迫下的变化更显著;(6)轻度盐胁迫下,叶片过氧化物酶(POD)活性无显著变化,而过氧化氢酶(CAT)和超氧化物歧化酶(SOD)活性逐渐升高,在重度胁迫下3种酶活性出现降低;(7)脯氨酸和可溶性糖少量积累,辅助调节渗透平衡。总之,槲树幼苗能够通过调控离子平衡,提升抗氧化酶活性,积累渗透调节物,从而提高耐盐性,抵御200 mmol/L以下的NaCl胁迫。  相似文献   

6.
We isolated a cDNA for basic class I chitinase (ChitiWb1). ChitiWb1 cDNA encodes a protein that consists of 315 amino acid residues and has a signal peptide. Northern blot analysis indicated that the class I chitinase mRNA in leaves and cultured cells of winged bean was increased by treatments with NaCl, KCl, CaCl2, mannitol or saccharose, but not with abscisic acid. Thus, class I chitinase expression was shown to be up-regulated by osmotic stress.  相似文献   

7.
Although some plant responses to salinity have been characterized, the precise mechanisms by which salt stress damages plants are still poorly understood especially in woody plants. In the present study, the physiological and biochemical responses of Broussonetia papyrifera, a tree species of the family, Moraceae, to salinity were studied. In vitro-produced plantlets of B. papyrifera were treated with varying levels of NaCl (0, 50, 100 and 150 mM) in hydroponic culture. Changes in ion contents, accumulation of H2O2, as well as the activities and isoform profiles of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in the leaves, stems and roots were investigated. Under salt stress, there was higher Na+ accumulation in roots than in stems and leaves, and Ca2 +, Mg2 + and P3 + content, as well as K+/Na+ ratio were affected. NaCl treatment induced an increase in H2O2 contents in the tissues of B. papyrifera. The work demonstrated that activities of antioxidant defense enzymes changed in parallel with the increased H2O2 and salinity appeared to be associated with differential regulation of distinct SOD and POD isoenzymes. Moreover, SDS-PAGE analysis of total proteins extracted from leaves and roots of control and NaCl-treated plantlets revealed that in the leaves salt stress was associated with decrease or disappearance of some protein bands, and induction of a new protein band after exposure to 100 and 150 mM NaCl. In contrast, NaCl stress had little effect on the protein pattern in the roots. In summary, these findings may provide insight into the mechanisms of the response of woody plants to salt stress.  相似文献   

8.
采用温室盆栽试验研究不同NaCl浓度(0、50 和85 mmol/L)持续胁迫接种摩西球囊霉和地表球囊霉 2种AM真菌对加工番茄耐盐性的影响。结果显示:(1)在0 mmol/L NaCl处理条件下,2种菌的番茄菌根化苗的根系活力、叶片中可溶性糖、可溶性蛋白、根系脯氨酸含量以及超氧化物歧化酶和过氧化物酶活性均高于非菌根植株,且丙二醛含量低于非菌根植株,但差异不显著。(2)在50、85 mmol/L NaCl浓度胁迫下,接种2种菌根真菌可显著提高番茄植株根系活力,促进叶片中可溶性糖、可溶性蛋白及根系脯氨酸含量的积累,显著提高叶片中与抗逆相关的超氧化物歧化酶和过氧化物酶的活性,减少丙二醛在根系中的积累;随着NaCl浓度的增加,效果更为明显。(3)RT-PCR分析显示,AM真菌和盐胁迫共同调控H+转运无机焦磷酸酶H+- PPase的表达,随NaCl浓度的增加,AVP1基因表达量下降,但菌根化番茄植株的AVP1基因表达量显著高于非菌根植株。研究表明,接种AM真菌后,菌根化植株可通过显著促进幼苗体内渗透调节物质积累和抗氧化酶活性的提高,有效降低体内膜脂过氧化水平,同时过量表达AVP1基因增加了番茄植株中离子向液泡膜的转运,从而缓解盐胁迫对植株的伤害,增强番茄幼苗对盐胁迫的耐性。  相似文献   

9.
The present work aimed to investigate the mechanisms of nitric oxide (NO) and reactive oxygen species (ROS) generations and to explore their roles in the regulation of antioxidative responses in the wheat leaves under salinity. Except for an insignificant change of NO content and nitrate reductase (NR) activity due to 50 mM NaCl, NO, hydrogen peroxide, superoxide anion (O2?-), hydroxyl radical (?OH), chlorophyll and malondialdehyde content, as well as activities of nitric oxide synthase, NR, peroxidases (POD), catalase (CAT), and ascorbate peroxidase rose in response to different NaCl concentrations. Meanwhile, leaf superoxide dismutase activity lowered only at 50 mM NaCl. NaCl-stimulatory effects on NO content as well as POD and CAT activities could be partly alleviated by the application of 2-phenyl-4,4,5,5-tetrame-thylimidazoline-3-oxide-1-oxyl (PTIO, NO scavenger), exogenous CAT, or diphenylene iodonium (DPI, NADPH oxidase inhibitor). Native polyacrylamide gel electrophoresis also showed that the amount of POD (especially POD4, POD5, and POD7) and CAT (especially CAT1, CAT2, and CAT3) isozymes increased with increasing salinity but decreased by application of PTIO, CAT, or DPI. Furthermore, histochemical staining showed a similar change of O2?- generation. In addition, the inhibition of diamineoxidase (DAO), polyamine oxidase (PAO), and cell wall-bound POD (cw-POD) activities in NaCl-stressed seedlings seemed to be insensitive to the application of PTIO or DPI. Taken together, salinity-induced NO, H2O2, and O2?- generation influenced each other and played different roles in the regulation of antioxidant enzyme activities in the leaves of wheat seedlings under NaCl treatment.  相似文献   

10.
In the present study, the physiological responses of Nitraria tangutorum Bobr. seedlings to NaCl stress and the regulatory function of exogenous application of salicylic acid (SA) were investigated. NaCl in low concentration (100 mM) increased while in higher concentrations (200–400 mM) decreased the individual plant dry weights (wt) of seedlings. Decreased relative water content (RWC) and chlorophyll content were observed in the leaves of seedlings subjected to salinity stress (100–400 mM NaCl). Furthermore, NaCl stress significantly increased electrolyte leakage and malondialdehyde (MDA) content. The levels of osmotic adjustment solutes including proline, soluble sugars, and soluble protein were enhanced under NaCl treatments as compared to the control. In contrast, exogenous application of SA (0.5–1.5 mM) to the roots of seedlings showed notable amelioration effects on the inhibition of individual plant dry wt, RWC, and chlorophyll content. The increases in electrolyte leakage and MDA content in the leaves of NaCl-treated seedlings were markedly inhibited by SA application. The SA application further increased the contents of proline, soluble sugars, and soluble protein. The activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) were up-regulated by NaCl stress and the activities of SOD, POD, and CAT were further enhanced by SA treatments. Application of SA in low concentration (0.5 mM) enhanced while in higher concentrations (1.0 and 1.5 mM) inhibited APX activities in leaves of NaCl-treated seedlings. These results indicate that SA effectively alleviated the adverse effects of NaCl stress on N. tangutorum.  相似文献   

11.
Effects of iso-osmotic concentrations of NaCl and mannitol were studied in Mammilaria gracilis (Cactaceae) in both calli and tumors grown in vitro. In both tissues, relative growth rates were reduced under osmotic stress, which were accompanied by a decrease in both tissue water and K+ content. However, growth was inhibited to a lesser extent after exposure to NaCl, when accumulation of Na+ ions was observed. In calli, only salinity increased proline content, whereas with tumors proline accumulated after both osmotic stresses. Osmotic stresses also induced oxidative damage in both cactus tissues, although higher oxidative injury was caused by mannitol in calli and by salt in tumors. Low iso-osmotic concentrations of NaCl (75 mM) and mannitol (150 mM) increased peroxidase, ascorbate peroxidase, and esterase activities, whereas elevated catalase activity was recorded only after mannitol treatment in both tissues. High osmotic stress generally decreased enzymatic activities. However, in calli, esterase activity increased in response to high salinity, whereas ascorbate peroxidase activity was enhanced after high mannitol stress. In conclusion, both in vitro-grown cactus tissues were found to be sensitive to osmotic stress caused by either mannitol or NaCl, but accumulation of Na+ ions in response to salt somewhat contributed to osmotic adjustment. However, more prominent oxidative damage induced by NaCl compared to mannitol in tumor could be related to ion toxicity. The mechanisms that mediate responses to salt- and mannitol-induced osmotic stresses differed and were dependent on tissue type.  相似文献   

12.
不同渗透压调节剂对Candida krusei生理代谢的影响   总被引:1,自引:0,他引:1  
比较了氯化钠、氯化钾、甘露醇存在的高渗环境下克鲁氏假丝酵母(Candida kru-sei)的生理代谢。3种渗透压调节剂对C.krusei生理代谢影响有显著差异。与甘露醇相比,氯化钠和氯化钾对细胞生长的影响更为显著,而氯化钾对细胞的毒性则又小于氯化钠。细胞对糖的消耗速率依次为甘露醇>氯化钾>氯化钠。甘油和海藻糖是C.krusei在高渗环境下的主要相容性溶质。氯化钠和氯化钾对甘油合成的促进作用明显高于甘露醇。在0.6mol/L氯化钠、氯化钾、甘露醇存在时,细胞甘油浓度较对照提高了74%、63%、57%;胞内甘油最大含量也分别达到对照的3.1,2.4和1.8倍。高渗环境下胞内海藻糖含量在发酵前期均有所降低,但发酵后期在0.6mol/L氯化钾和甘露醇存在时海藻糖迅速积累,其含量分别达对照的1.6和1.4倍。  相似文献   

13.
2种鼠尾草对NaCl胁迫的耐受性比较及其生理机制研究   总被引:1,自引:0,他引:1  
以具有较高药用和观赏价值的美丽鼠尾草和贵州鼠尾草为实验材料,分析2种鼠尾草在NaCl(0、200、300、400、500、600mmol·L-1)胁迫下的生长、叶绿素含量、保护酶活性和有机渗透调节物质含量的变化,以明确2种鼠尾草对NaCl胁迫的耐受性差异及其生理机制。结果显示:(1)在实验NaCl浓度范围内,美丽鼠尾草的受害程度均高于贵州鼠尾草;(2)随着NaCl浓度的提高,贵州鼠尾草叶片叶绿素含量无显著变化,而美丽鼠尾草叶绿素含量逐渐显著降低;(3)当NaCl浓度从0增加到500mmol·L-1时,2种鼠尾草叶片的POD、CAT活性以及可溶性糖、可溶性蛋白质和脯氨酸含量逐渐升高,且美丽鼠尾草叶片的SOD活性也逐渐升高;(4)当NaCl浓度达到600mmol·L-1时,美丽鼠尾草叶片可溶性糖、可溶性蛋白质和脯氨酸含量继续增加,SOD、POD和CAT活性开始降低但仍显著高于对照,而贵州鼠尾草叶片的POD和CAT活性继续增加,可溶性糖、可溶性蛋白质和脯氨酸含量开始降低但仍显著高于对照。研究表明,贵州鼠尾草在NaCl胁迫下具有较高的渗透调节物质含量,而且随着NaCl浓度的增加能够维持较高的保护酶活性,因此对NaCl胁迫的耐受性强于美丽鼠尾草。  相似文献   

14.
海滨滨麦叶片和根对不同厚度沙埋的生理响应差异分析   总被引:1,自引:0,他引:1  
以烟台海岸抗风沙植物滨麦为研究材料,通过对不同厚度沙埋下其叶片和根部抗氧化酶活力(超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT))、丙二醛(MDA)含量和渗透调节物含量变化的分析,探讨了叶片和根部对沙埋生理响应的差异。试验按滨麦成株株高(约40 cm)对其进行了轻度沙埋(在株高1/4处)、中度沙埋(2/4处)和重度沙埋(3/4处)。在沙埋第6天,分别测定了不同厚度沙埋处理下,植株各段叶片和根抗氧化酶活力、MDA和渗透调节物含量。结果表明,轻度和中度沙埋均加速植株生长。与对照相比,经轻度、中度沙埋处理6 d,叶片平均MDA含量增加,在重度沙埋下降低。不同厚度沙埋6 d,叶片平均SOD活力和脯氨酸含量增加,而CAT活力、可溶性糖和可溶性蛋白质含量下降。但不同厚度沙埋均使沙上叶片MDA、脯氨酸、可溶性蛋白质含量和SOD和CAT活力增加,尤其是叶片顶部增加最为明显,使沙下叶片MDA、可溶性糖、可溶性蛋白质含量和CAT活力下降,导致同株沙上和沙下叶片MDA、脯氨酸、可溶性糖、可溶性蛋白质含量和SOD和CAT活力差异显著(P0.05)。与叶片相比,根中MDA、可溶性蛋白质含量和SOD和CAT活力较低,而POD活力和可溶性糖含量较高并与叶片差异显著(P0.05)。不同厚度沙埋6 d,滨麦根中MDA和可溶性蛋白质含量变化较小,可溶性糖含量和CAT、POD、SOD活力略有降低。研究表明,滨麦根和叶片对不同厚度沙埋的生理响应不同。沙埋直接作用于叶片并诱发叶内氧自由基积累,但叶片通过快速激活的抗氧化酶保护系统(CAT、SOD)维持氧自由基代谢平衡,以及渗透调节物(脯氨酸、可溶性糖)的积累维护细胞水分代谢平衡,并满足能量的需求和快速生长。但在不同厚度沙埋下,由于根系不受沙埋直接影响而生理变化较小,并且还维持较低的膜脂过氧化水平,这可能是根能维持正常的吸水输水功能并在沙埋处理过程中和沙埋后地上叶片快速生长摆脱沙埋的重要物质基础。  相似文献   

15.

Indole-3-acetic acid (IAA) and gibberellic acid (GA3) are essential for the growth and development of plants. In the present study, the ameliorative potential of these phytohormones on growth, protein content, and antioxidant enzymes was investigated in in vitro-grown Solanum tuberosum L. cultivars ‘Cardinal’ and ‘Desiree’ under salt stress. A 4 × 3 factorial combination of 0, 40, 60, or 80 mM NaCl with 0, 7, or 14 μM IAA, or 0, 14, or 21 μM GA3, were added to Murashige and Skoog (MS) basal medium, followed by inoculation of nodal explants or callus cultures. The data for root and shoot number and length, number of nodes and leaves, fresh weight of plants, increase or decrease in fresh weight of callus cultures, total soluble protein, and superoxide dismutase (SOD) and peroxidase (POD) activities were recorded after 30 d. The growth of both callus cultures and nodal explants subjected to NaCl stress was substantially reduced compared with the control. Both IAA and GA3 successfully alleviated the harmful effects of salt stress on all of the growth parameters studied. Salt stress resulted in decreased protein content, which increased when the media also contained phytohormones. The activities of SOD and POD were increased with either IAA or GA3 under NaCl stress. Therefore, the exogenous application of both IAA and GA3 not only played a positive role in terms of in vitro potato growth but also significantly affected the biochemical parameters tested.

  相似文献   

16.
裸果木起源于古地中海,为亚洲中部荒漠区分布的第三纪孑遗植物种,对研究旱生植物演化过程具有重要的科学价值。以一年生裸果木(Gymnocarpos przewalskii)实生苗为材料,在盆栽条件下用质量浓度为0.4%、0.8%、1.2%和1.6%的NaCl溶液进行盐胁迫处理,测定各NaCl处理下裸果木幼苗叶片的抗氧化酶活性、渗透调节物质含量、叶绿素含量、相对电导率(REC)、丙二醛(MDA)含量以及株高、基径,根、茎、叶、总干重,根冠比变化,探讨裸果木幼苗对盐胁迫的生理耐受性。结果显示,(1)随着盐胁迫程度的加重,裸果木幼苗株高、基径,以及根、茎、叶干重和总干重整体呈下降趋势,而根冠比呈上升趋势;裸果木幼苗株高、基径和根干重在0.4%NaCl处理下较对照变化不显著,但其茎干重、叶干重和总干重在各NaCl处理下均显著低于对照。(2)随着盐胁迫程度的加重,裸果木幼苗叶片的可溶性糖(SS)含量、可溶性蛋白(SP)含量、超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性均先升高后降低,而脯氨酸(Pro)含量、过氧化氢酶(CAT)活性、REC、MDA含量均呈持续升高趋势;在0.8%NaCl处理...  相似文献   

17.
沙棘(Hippophae rhamnoides)是重要的雌雄异株人工林防护树种,但对其环境胁迫的性别响应差异研究不足,性别竞争与胁迫因子的交互效应响应特征尚不清楚。为了探讨锰胁迫和性别竞争交互处理下沙棘雌雄植株的生理响应特征和耐受能力,旨在为沙棘修复土壤重金属污染提供实践指导,该文研究了锰胁迫(4 000 mg·kg-1)和3种不同性别组合模式(雌雄、雌雌、雄雄)处理下沙棘的生理响应,分别测定雌雄沙棘叶片中叶绿素、过氧化物酶(peroxidase,POD)、超氧化物歧化酶(superoxide dismutase,SOD)、丙二醛(malondialdehyde,MDA)、总酚(total phenols, TP)、游离脯氨酸(free proline,Pro)、可溶性糖(soluble sugar,SS)、甜菜碱(glycine betaine, GB)以及锰含量。结果表明:(1)锰胁迫下,在所有竞争组合中,性间竞争的雄株(M/FM)SOD活性最高,而MDA含量与对照相比未有明显升高,表明雄株的抗氧化能力更好,膜氧化损伤程度更小。(2)锰胁迫时M/FM积累了更多的游离脯氨酸,表现出更好的渗透调节能力和耐受能力。(3)交互效应分析显示性别互作和锰胁迫交互处理显著影响了沙棘雌雄叶片的光合色素、抗氧化酶活性和渗透调节能力; 主成分分析显示SOD、POD、MDA、叶绿素b(chlorophyll b, Chlb)、SS、Pro可作为重要的生理响应指示参数。该研究结果对于利用沙棘修复土壤重金属污染可提供一定的参考。  相似文献   

18.
等渗NaCl和KCl胁迫对高粱幼苗生长和气体交换的影响   总被引:1,自引:1,他引:1  
本文比较研究了等渗NaCl和KCl胁迫下,高粱幼苗生长及叶片离子含量、质膜相对透性和有关气体交换参数的变化。结果表明,在低浓度NaCl和KCl胁迫7天时,高粱生长、含水量和质膜相对透性与对照相比没有明显变化,而净光合速率、蒸腾速率和气孔导度已明显下降,叶肉细胞间隙CO2浓度明显增加。NaCl胁迫下叶片Na+含量成倍增加,而K+和Ca2+含量无明显变化。KCl胁迫时叶片K+含量明显增加,Ca2+含量明显下降,而Na+含量没有明显变化。随着NaCl或KCl浓度的增加,幼苗生长和叶片含水量明显下降,质膜透性和细胞间隙CO2浓度明显增加,净光合速率、蒸腾速率和气孔导度进一步下降。NaCl胁迫下叶片Na+含量进一步增加,K+和Ca2+进一步下降,而KCl胁迫下叶片K+含量进一步增加,Na+和Ca2+含量进一步下降。KCl对高粱生长抑制、质膜透性、Ca2+含量下降及光合气体交换参数的影响均明显大于等渗的NaCl。  相似文献   

19.
丁俊祥  邹杰  唐立松  刘卫国 《生态学报》2015,35(16):5316-5323
对于田地区3种不同生境(沼泽、盐化沙丘过渡带和沙丘顶)芦苇的生长环境特征、光合特性、渗透调节及抗氧化系统的特征进行研究。结果表明:芦苇叶片的Pn日变化在沼泽生境呈单峰曲线,在盐化沙丘过渡带和沙丘顶部均为双峰曲线,光合"午休"现象明显,气孔导度降低是其主要原因。脯氨酸和可溶性糖含量随根区土壤水分减少和盐分加剧增加显著,其中可溶性糖含量变化剧烈,对抵御干旱和盐渍化危害的贡献较大。芦苇叶片超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性随干旱及盐分加剧增加显著,两者对水分亏缺的响应较盐分敏感,且可有效缓解沙丘生境由于缺水所造成的氧化损伤,使丙二醛(MDA)含量维持在相对较低水平。过氧化物酶(POD)活性在沙丘和盐渍化生境内都比较高,对抵抗盐渍化和干旱起着同样重要的作用。  相似文献   

20.
盐胁迫是影响作物生长的主要非生物胁迫类型,引起离子毒害和渗透胁迫,导致植物生长减弱、失绿、萎蔫甚至死亡。前期研究表明,适宜浓度的外源亚精胺能够缓解盐胁迫条件下植物叶片受损伤程度,提升生物膜抵抗盐离子伤害的能力,促进植物生长。该试验采用营养液培养法,以100mmol·L-1、200mmol·L-1、300 mmol· L-1NaCl溶液模拟不同盐胁迫程度,以中度耐盐品种晋薯16号、轻度耐盐品种冀张薯12号为试材,当马铃薯脱毒幼苗长至 4~5 片真叶时,连续叶面喷施0.9mmol·L-1外援亚精胺 7 d,2次/d。分析叶面喷施外源亚精胺(Spd)对不同盐胁迫程度条件下马铃薯幼苗生长、叶片抗氧化酶活性、渗透调节物质含量的影响。结果表明:(1)叶面喷施Spd缓解了盐胁迫对幼苗生长的抑制作用,提高了叶绿素含量和根系活力,提升超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)、抗坏血酸(ASA)和谷胱甘肽(GSH)等抗氧化酶活性,以及脯氨酸、可溶性糖、氨基酸含量;(2)200 mmol· L-1NaCl胁迫条件下,Spd对“晋薯16号”缓解作用最显著。研究表明Spd通过提高马铃薯幼苗根系活力、叶绿素含量、抗氧化酶活性、渗透调节能力,提高马铃薯幼苗对盐胁迫的适应性,促进马铃薯幼苗生长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号