首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Sousa  A J Parodi 《The EMBO journal》1995,14(17):4196-4203
The UDP-Glc:glycoprotein glucosyltransferase is a soluble enzyme of the endoplasmic reticulum that glucosylates protein-linked Man7-9GlcNAc2 to form the monoglucosylated derivatives. In vivo the reaction products are immediately deglucosylated by glucosidase II. The glucosyltransferase has a unique property: it glucosylates misfolded, but not native, glycoproteins. It has been proposed that the glucosyltransferase participates, together with calnexin, in the control mechanism by which only properly folded glycoproteins can exit from the endoplasmic reticulum. In this paper it is demonstrated that the glucosyltransferase recognizes two elements in the acceptor substrates: the innermost N-acetylglucosamine unit of the oligosaccharide and protein domains exposed in denatured, but not in native, conformations. Both determinants have to be covalently linked. In many cases the first element is not accessible to macromolecular probes in native conformations. Concerning the protein domains, it is demonstrated here that the glucosyltransferase interacts with hydrophobic amino acids exposed in denatured conformations. More disordered conformations, i.e. those exposing more hydrophobic amino acids, were found to be those having higher glucose acceptor capacity. It is suggested that both accessibility of the innermost N-acetylglucosamine unit and binding to hydrophobic patches determine the exclusive glucosylation of misfolded conformations by the glucosyltransferase.  相似文献   

2.
P S Kay  P Menzel    T Inoue 《The EMBO journal》1988,7(11):3531-3537
A shortened form of the self-splicing rRNA intervening sequence (IVS) of Tetrahymena thermophila can catalyze a transesterification reaction, termed G-exchange, between a monomeric guanosine derivative such as GTP and the substrate GpN (where N is A, C, G or U). The reaction is specific to the two guanosines involved, providing evidence that two guanosine binding sites exist in this group I IVS RNA. One binding site accommodates a guanosine which initiates self-splicing and the other recognizes the guanosine preceding the 3' splice site. Previously, only one guanosine binding site was thought to be involved in the mechanism of self-splicing. Based on the two functionally distinguishable guanosine binding sites, a new model is proposed to explain how the two independent transesterification reactions required for self-splicing might proceed in a concerted manner.  相似文献   

3.
4.
A Bernad  L Blanco  J M Lázaro  G Martín  M Salas 《Cell》1989,59(1):219-228
The 3'----5' exonuclease active site of E. coli DNA polymerase I is predicted to be conserved for both prokaryotic and eukaryotic DNA polymerases based on amino acid sequence homology. Three amino acid regions containing the critical residues in the E. coli DNA polymerase I involved in metal binding, single-stranded DNA binding, and catalysis of the exonuclease reaction are located in the amino-terminal half and in the same linear arrangement in several prokaryotic and eukaryotic DNA polymerases. Site-directed mutagenesis at the predicted exonuclease active site of the phi 29 DNA polymerase, a model enzyme for prokaryotic and eukaryotic alpha-like DNA polymerases, specifically inactivated the 3'----5' exonuclease activity of the enzyme. These results reflect a high evolutionary conservation of this catalytic domain. Based on structural and functional data, a modular organization of enzymatic activities in prokaryotic and eukaryotic DNA polymerases is also proposed.  相似文献   

5.
Uridine 5-diphosphoglucose-dependent glucosyl-transferases (UDP-glucose:betanidin 5-O- and 6-O-glucosyltransferases; 5-GT and 6-GT; EC 2.4.1) catalyze the regiospecific transfer of glucose to the 5- and 6-hydroxy group of betanidin in the formation of betanin and gomphrenin I, respectively. Both GT activities were partially purified from cell suspension cultures of Dorotheanthus bellidiformis (Burm. f.) N.E. Br. Isoelectric focusing of crude protein extracts indicated the presence of three 5-GT isoforms and a single 6-GT form. The 5-GT isoforms were partially separated from each other and completely from the 6-GT. Studies of the glucosyltransferase activities were focused on the major isoform of the 5-GTs and the 6-GT, which displayed the same pH optimum near 7.5 in K-phosphate buffer. A 3- and 2.5-fold enrichment and 11% and 10% recovery of the 5-GT and 6-GT, respectively, were routinely achieved; however, a 3300-fold enrichment of the major 5-GT isoform and a 6-fold enrichment of the 6-GT were also achieved. Both enzymes are monomers and displayed apparent native Mrs near 55 000. The maxima of the reaction temperature were at 50 °C for the 5-GT and at 37°C for the 6-GT with respective apparent energies of activation of 51 and 53 kJ · mol–1. Kinetic studies indicated that the apparent Michaelis constants (apparent K m) of the GTs for one substrate were dependent on the concentration of the second substrate. However, the relationship between the apparent K m values and the dissociation constants (K i) were different; m > K i applies for the 5-GT and K m < K i for the 6-GT activity. Consequently, this results in a predominant formation of betanin at low substrate concentrations, but a predominant formation of gomphrenin I at high substrate concentrations, assuming that both enzymes may compete freely for their substrates. This might explain why we could not observe a correlation between extractable 5-GT and 6-GT activities and the in-vivo accumulation of the respective products from cell-suspension cultures of D. bellidiformis.Abbreviations BSA bovine serum albumin - DOPA l-(3,4-dihydroxyphenyl)-alanine - 5-GT UDP-glucose:betanidin 5-O-glucosyltransferase - 6-GT UDP-glucose:betanidin 6-O-glucosyl-transferase - Mr molecular mass This investigation was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.  相似文献   

6.
Ca2+ stimulation of adenylyl cyclase type VIII (ACVIII) occurs through loosely bound calmodulin. However, where calmodulin binds in ACVIII and how the binding activates this cyclase have not yet been investigated. We have located two putative calmodulin-binding sites in ACVIII. One site is located at the N terminus as revealed by overlay assays; the other is located at the C terminus, as indicated by mutagenesis studies. Both of these calmodulin-binding sites were confirmed by synthetic peptide studies. The N-terminal site has the typical motif of a Ca2+-dependent calmodulin-binding domain, which is defined by a characteristic pattern of hydrophobic amino acids, basic and aromatic amino acids, and a tendency to form amphipathic alpha-helix structures. Functional, mutagenesis studies suggest that this binding makes a minor contribution to the Ca2+ stimulation of ACVIII activity, although it might be involved in calmodulin trapping by ACVIII. The primary structure of the C-terminal site resembles another calmodulin-binding motif, the so-called IQ motif, which is commonly Ca2+-independent. Mutagenesis and functional assays indicate that this latter site is a calcium-dependent calmodulin-binding site, which is largely responsible for the Ca2+ stimulation of ACVIII. Removal of this latter calmodulin-binding region from ACVIII results in a hyperactivated enzyme state and a loss of Ca2+ sensitivity. Thus, Ca2+/calmodulin regulation of ACVIII may be through a disinhibitory mechanism, as is the case for a number of other targets of Ca2+/calmodulin.  相似文献   

7.
The complete nucleotide sequence was determined for the Streptococcus sobrinus MFe28 gtfI gene, which encodes a glucosyltransferase that produces an insoluble glucan product. A single open reading frame encodes a mature glucosyltransferase protein of 1,559 amino acids (Mr, 172,983) and a signal peptide of 38 amino acids. In the C-terminal one-third of the protein there are six repeating units containing 35 amino acids of partial homology and two repeating units containing 48 amino acids of complete homology. The functional role of these repeating units remains to be determined, although truncated forms of glucosyltransferase containing only the first two repeating units of partial homology maintained glucosyltransferase activity and the ability to bind glucan. Regions of homology with alpha-amylase and glycogen phosphorylase were identified in the glucosyltransferase protein and may represent regions involved in functionally similar domains.  相似文献   

8.
Understanding of protein–urea interactions is one of the greatest challenges to modern structural protein chemistry. Based in enzyme kinetics experiments and 1H NMR spectroscopic analysis we proposed that urea, at low concentrations, directly interacts with the protonated histidines of the active center of RNase A, following a simple model of competitive inhibition. These results were supported by theoretical analysis based on the frontier molecular orbital theory and suggest that urea might establish a favorable interaction with the cationic amino acids. Our experimental evidence and theoretical analysis indicate that the initials steps of the molecular mechanism of Urea–RNase A interaction passes through the establishment of a three center four electron adduct. Also, our results would explain the observed disruption of the 1H NMR signals corresponding to H12 and H119 (involved in catalysis) of the RNase A studied in the presence of urea. Our interaction model of urea–amino acids (cationic) can be extended to explain the inactivation of other enzymes with cationic amino acids at the active site.  相似文献   

9.
The glucosyltransferase amylosucrase is structurally quite similar to the hydrolase alpha-amylase. How this switch in functionality is achieved is an important and fundamental question. The inactive E328Q amylosucrase variant has been co-crystallized with maltoheptaose, and the structure was determined by x-ray crystallography to 2.2 A resolution, revealing a maltoheptaose binding site in the B'-domain somewhat distant from the active site. Additional soaking of these crystals with maltoheptaose resulted in replacement of Tris in the active site with maltoheptaose, allowing the mapping of the -1 to +5 binding subsites. Crystals of amylosucrase were soaked with sucrose at different concentrations. The structures at approximately 2.1 A resolution revealed three new binding sites of different affinity. The highest affinity binding site is close to the active site but is not in the previously identified substrate access channel. Allosteric regulation seems necessary to facilitate access from this binding site. The structures show the pivotal role of the B'-domain in the transferase reaction. Based on these observations, an extension of the hydrolase reaction mechanism valid for this enzyme can be proposed. In this mechanism, the glycogen-like polymer is bound in the widest access channel to the active site. The polymer binding introduces structural changes that allow sucrose to migrate from its binding site into the active site and displace the polymer.  相似文献   

10.
The binding of the antitumor agents SN-16814 nd SN-13232 to various DNA's in solution was monitored by CD and UV absorption measurements. In addition comparative studies with dA.dT containing duplex DNA of the related ligands SN-6136 and SN-6324 were included with respect to effects of structural variations. In general all four ligands show a dA.dT preference in their binding affinity to DNA. Differences were observed for the reaction of SN-16814 which contains bicyclic ring system: it has a lower base pair selectivity, shows some affinity to poly(dG-dC).poly(dG-dC), poly(rA).poly(rU) and poly(rU). The binding mechanism of SN-16814 is associated with a significant time dependent binding effect in CD spectra and UV absorption in case of reaction with poly(dA).poly(dT) and poly(dI).poly(dC) indicating a slow kinetics. The preferred binding to dA.dT base pairs in DNA decreases in the order from SN-61367 greater than SN-13232 greater than SN-6324,SN-16814 as judged from CD titration studies, salt dissociation and melting temperature data. Competitive binding experiments with netropsin (Nt) or distamycin-5 revealed that SN-16814 and SN-13232 are displaced from poly(dA.dT).poly(dA-dT) suggesting that both ligands are less strongly bound than Nt and Dst-5 within the minor groove of B-DNA. These studies are consistent with results of the DNAse I cleavage of poly(dA-dT).poly(dA-dT) which show the same relative order of inhibition of the cleavage reaction due to ligand binding. The results suggest that the variability of the DNA binding and dA.dT sequence specificity may reside in the adaptability of benzamide-type ligands in the helical groove which is influenced by distinct structural modifications of the ligand conformation.  相似文献   

11.
Eubacterial leucyl/phenylalanyl tRNA protein transferase (L/F transferase) catalyzes the transfer of a leucine or a phenylalanine from an aminoacyl-tRNA to the N-terminus of a protein substrate. This N-terminal addition of an amino acid is analogous to that of peptide synthesis by ribosomes. A previously proposed catalytic mechanism for Escherichia coli L/F transferase identified the conserved aspartate 186 (D186) and glutamine 188 (Q188) as key catalytic residues. We have reassessed the role of D186 and Q188 by investigating the enzymatic reactions and kinetics of enzymes possessing mutations to these active-site residues. Additionally three other amino acids proposed to be involved in aminoacyl-tRNA substrate binding are investigated for comparison. By quantitatively measuring product formation using a quantitative matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based assay, our results clearly demonstrate that, despite significant reduction in enzymatic activity as a result of different point mutations introduced into the active site of L/F transferase, the formation of product is still observed upon extended incubations. Our kinetic data and existing X-ray crystal structures result in a proposal that the critical roles of D186 and Q188, like the other amino acids in the active site, are for substrate binding and orientation and do not directly participate in the chemistry of peptide bond formation. Overall, we propose that L/F transferase does not directly participate in the chemistry of peptide bond formation but catalyzes the reaction by binding and orientating the substrates for reaction in an analogous mechanism that has been described for ribosomes.  相似文献   

12.
The hepatitis E virus (HEV) capsid consists of a single structural protein, a portion of which is engaged in isosahedral contact to form a basal shell, and another portion in dimeric contact to form the homodimers protruding from the shell. Previous studies revealed that homodimers of the truncated HEV capsid proteins, E2 (amino acids 394-606) and p239 (amino acids 368-606), model dominant antigenic determinants of HEV. Immunization with these proteins protected rhesus monkeys against the virus, and three monoclonal antibodies against the homodimers could neutralize HEV infectivity and/or immune-capture of the virus. Furthermore, homodimers of p239 further interact to form particles of 23 nm diameter, rendering it an efficacious candidate vaccine. In light of this we postulate that the interactions involved in the formation of the homodimers and particles might be similar to those involved in assembly of the virus capsid. Presently, mutational analysis was carried out to identify these sites of interactions. The site of dimeric interactions was located to a cluster of six hydrophobic amino acids residues, Ala597, Val598, Ala599, Leu601, and Ala602; furthermore, the site involved in particle formation was located at amino acids 368-394. The possibility that these sites are also involved in assembly of the virus capsid is supported by the fact that they are located at two major and highly conserved hydrophobic regions of the HEV structural protein.  相似文献   

13.
Masada S  Terasaka K  Mizukami H 《FEBS letters》2007,581(14):2605-2610
Curcumin glucosyltransferase (CaUGT2) isolated from cell cultures of Catharanthus roseus exhibits unique substrate specificity. To identify amino acids involved in substrate recognition and catalytic activity of CaUGT2, a combination of domain swapping and site-directed mutagenesis was carried out. Exchange of the PSPG-box of CaUGT2 with that of NtGT1b (a phenolic glucosyltransferase from tobacco) led to complete loss of enzyme activity in the resulting recombinant protein. However, replacement of Arg378 of the NtGT1b PSPG-box with cysteine, the corresponding amino acid in CaUGT2, restored the catalytic activity of the chimeric enzyme. Further site-directed mutagenesis revealed that the size of the amino acid side-chain in that particular site is critical to the catalytic activity of CaUGT2.  相似文献   

14.
15.
The interaction of Streptococcus pneumoniae with human plasmin(ogen) represents a mechanism to enhance bacterial virulence by capturing surface-associated proteolytic activity in the infected host. Plasminogen binds to surface displayed pneumococcal alpha-enolase (Eno) and is subsequently activated to the serine protease plasmin by host-derived tissue plasminogen activator (tPA) or urokinase (uPA). The C-terminal lysyl residues of Eno at position 433 and 434 were identified as a binding site for the kringle motifs of plasmin(ogen) which contain lysine binding sites. In this report we have identified a novel internal plamin(ogen)-binding site of Eno by investigating the protein-protein interaction. Plasmin(ogen)-binding activity of C-terminal mutated Eno proteins used in binding assays as well as surface plasmon resonance studies suggested that an additional binding motif of Eno is involved in the Eno-plasmin(ogen) complex formation. The analysis of spot synthesized synthetic peptides representing Eno sequences identified a peptide of nine amino acids located between amino acids 248-256 as the minimal second binding epitope mediating binding of plasminogen to Eno. Binding of radiolabelled plasminogen to viable pneumococci was competitively inhibited by a synthetic peptide FYDKERKVYD representing the novel internal plasmin(ogen)-binding motif of Eno. In contrast, a synthetic peptide with amino acid substitutions at critical positions in the internal binding motif identified by systematic mutational analysis did not inhibit binding of plasminogen to pneumococci. Pneumococcal mutants expressing alpha-enolase with amino acid substitutions in the internal binding motif showed a substantially reduced plasminogen-binding activity. The virulence of these mutants was also attenuated in a mouse model of intranasal infection indicating the significance of the novel plasminogen-binding motif in the pathogenesis of pneumococcal diseases.  相似文献   

16.
Lysyl hydroxylase (EC ) and glucosyltransferase (EC ) are enzymes involved in post-translational modifications during collagen biosynthesis. We reveal in this paper that the protein produced by the cDNA for human lysyl hydroxylase isoform 3 (LH3) has both lysyl hydroxylase and glucosyltransferase (GGT) activities. The other known lysyl hydroxylase isoforms, LH1, LH2a, and LH2b, have no GGT activity. Furthermore, antibodies recognizing the amino acid sequence of human LH3 and those against a highly purified chicken GGT partially inhibited the GGT activity. Similarly, a partial inhibition was observed when these antibodies were tested against GGT extracted from human skin fibroblasts. In vitro mutagenesis experiments demonstrate that the amino acids involved in the GGT active site differ from those required for LH3 activity.  相似文献   

17.
Steady-state kinetic analyses revealed that the methylation reaction of the human DNA (cytosine-5) methyltransferase 1 (DNMT1) is repressed by the N-terminal domain comprising the first 501 amino acids, and that repression is relieved when methylated DNA binds to this region. DNMT1 lacking the first 501 amino acids retains its preference for hemimethylated DNA. The methylation reaction proceeds by a sequential mechanism, and either substrate (S-adenosyl-l-methionine and unmethylated DNA) may be the first to bind to the active site. However, initial binding of S-adenosyl-l-methionine is preferred. The binding affinities of DNA for both the regulatory and the catalytic sites increase in the presence of methylated CpG dinucleotides and vary considerably (more than one hundred times) according to DNA sequence. DNA topology strongly influences the reaction rates, which increased with increasing negative superhelical tension. These kinetic data are consistent with the role of DNMT1 in maintaining the methylation patterns throughout development and suggest that the enzyme may be involved in the etiology of fragile X, a syndrome characterized by de novo methylation of a greatly expanded CGG.CCG triplet repeat sequence.  相似文献   

18.
19.
Glucokinase catalyzes phosphoryl group transfer from ATP to glucose to form glucose-6-phosphate in the first step of cellular metabolism. While the location of the ATP-binding site of glucokinase was proposed recently, limited information exists on its conformation or the key amino acids involved in substrate binding. Affinity labeling with phenylglyoxal is used to probe possible Arg residues involved in ATP binding. Electrospray ionization mass spectrometry indicates that reaction of purified glucokinase with phenylglyoxal results in as many as six or seven sites of modification, suggesting nonspecific modification. However, preincubation of glucokinase with glucose followed by reaction with phenylglyoxal reveals only two sites of modification. Glucokinase activity assays show that enzyme preincubated with glucose possesses residual activity corresponding to the fraction of unmodified enzyme observed by mass spectrometry, strongly suggesting that glucokinase preincubated with glucose is specifically labeled and inactivated upon modification by phenylglyoxal. The data support the existing conformational model of glucokinase.  相似文献   

20.
Abstract

The binding of the antitumor agents SN-16814 nd SN-13232 to various DNA's in solution was monitored by CD and UV absorption measurements. In addition comparative studies with dA · dT containing duplex DNA of the related ligands SN-6136 and SN-6324 were included with respect to effects of structural variations. In general all four ligands show a dA · dT preference in their binding affinity to DNA.

Differences were observed for the reaction of SN-16814 which contains bicyclic ring system: it has a lower base pair selectivity, shows some affinity to poly(dG-dC) · poly(dG-dC), poly(rA) · poly(rU) and poly(rU). The binding mechanism of SN-16814 is associated with a significant time dependent binding effect in CD spectra and UV absorption in case of reaction with poly(dA) · poly(dT) and poly(dI) · poly(dC) indicating a slow kinetics.

The preferred binding to dA · dT base pairs in DNA decreases in the order from SN-61367 > SN-13232 > SN-6324, SN-16814 as judged from CD titration studies, salt dissociation and melting temperature data. Competitive binding experiments with netropsin (Nt) or distamycin-5 revealed that SN-16814 and SN-13232 are displaced from poly(dA-dT) · poly(dA-dT) suggesting that both ligands are less strongly bound than Nt and Dst-5 within the minor groove of B-DNA. These studies are consistent with results of the DNAase I cleavage of poly(dA-dT) · poly(dA-dT) which show the same relative order of inhibition of the cleavage reaction due to ligand binding. The results suggest that the variability of the DNAbinding and dA · dT sequence specificity may reside in the adaptability of benzamide-type ligands in the helical groove which is influenced by distinct structural modifications of the ligand conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号