首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anaerobic ribonucleoside triphosphate reductase from Escherichia coli reduces CTP to dCTP in the presence of a second protein, named dA1, and a Chelex-treated boiled extract of the bacteria, named RT. The reaction requires S-adenosylmethionine, NADPH, dithiothreitol, ATP, and Mg2+ and K+ ions. It occurs only under anaerobic conditions. We now show that the overall reaction occurs in two steps. The first is an activation of the reductase by dA1 and RT and requires S-adenosylmethionine, NADPH, dithiothreitol, and possibly K+ ions. In the second step, the activated reductase reduces CTP to dCTP with ATP acting as an allosteric effector. During activation, S-adenosylmethionine is cleaved reductively to methionine + 5'-deoxyadenosine. This step is inhibited strongly by S-adenosylhomocysteine and various chelators. The activation of the anaerobic reductase shows a considerable similarity to that of pyruvate formate-lyase (Knappe, J., Neugebauer, F. A., Blaschkowski, H. P., and G?nzler, M. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 1332-1335).  相似文献   

2.
The anaerobic ribonucleotide reductase from Escherichia coli contains an iron-sulfur cluster which, in the reduced [4Fe-4S]+ form, serves to reduce S-adenosylmethionine and to generate a catalytically essential glycyl radical. The reaction of the reduced cluster with oxygen was studied by UV-visible, EPR, NMR, and Mössbauer spectroscopies. The [4Fe-4S]+ form is shown to be extremely sensitive to oxygen and converted to [4Fe-4S]2+, [3Fe-4S]+/0, and to the stable [2Fe-2S]2+ form. It is remarkable that the oxidized protein retains full activity. This is probably due to the fact that during reduction, required for activity, the iron atoms, from 2Fe and 3Fe clusters, readily reassemble to generate an active [4Fe-4S] center. This property is discussed as a possible protective mechanism of the enzyme during transient exposure to air. Futhermore, the [2Fe-2S] form of the protein can be converted into a [3Fe-4S] form during chromatography on dATP-Sepharose, explaining why previous preparations of the enzyme were shown to contain large amounts of such a 3Fe cluster. This is the first report of a 2Fe to 3Fe cluster conversion.  相似文献   

3.
Strict and facultative anaerobes depend on a class III ribonucleotide reductase for their growth. These enzymes are the sole cellular catalysts for de novo biosynthesis of the deoxyribonucleotides needed for DNA chain elongation and repair. In its active form, the class III ribonucleotide reductase from Escherichia coli contains a free radical located on the G681 residue which is essential for the activation of the ribonucleotide substrate toward its reduction. The 3D structure of the homologous enzyme from bacteriophage T4 has revealed the presence of a metal center bound to four conserved cysteine residues. In this report we identify the metal of the E. coli enzyme as Zn. We show that the presence of Zn in this site protects the protein from proteolysis and prevents the formation of disulfide bridges within it. Finally, we show with the fully Zn-loaded reductase that thioredoxin or small thiols are dispensable for the formation of the glycyl radical. However, they are necessary for obtaining high turnover numbers, suggesting that they intervene in radical transfer steps subsequent to the formation of the glycyl radical.  相似文献   

4.
Ribonucleotide reductase from Escherichia coli consists of two nonidentical subunits, proteins B1 and B2. The active site of the enzyme is made up from both subunits. Protein B2 contributes inter alia an organic free radical which gives a characteristic EPR signal. This radical was now located by isotope substitution experiments to the beta position of a tyrosine residue. The EPR spectrum of protein B2 from bacteria grown in a completely deuterated medium was drastically changed. The change was reversed by the addition of other protonated amino acids. The involvement in radical formation of the beta position of tyrosine was demonstrated from EPR spectra of protein B2 from bacteria grown in the presence of specifically deuterated tyrosine.  相似文献   

5.
Class III anaerobic ribonucleotide reductase small component, named protein beta, contains a (4Fe-4S) center. Its function is to mediate electron transfer from reduced flavodoxin to S-adenosylmethionine, required for the introduction of a glycyl radical in the large component, named protein alpha, which then becomes active for the reduction of ribonucleotides. By site-directed mutagenesis we demonstrate that the three cysteines of the conserved CXXXCXXC sequence are involved in iron chelation. Such a sequence is also present in the activase of the pyruvate formate-lyase and in the biotin synthase, both carrying an iron-sulfur center involved in reductive activation of S-adenosylmethionine. Even though they are able to bind iron in the (4Fe-4S) form, as shown by M?ssbauer spectroscopy, the corresponding Cys to Ala mutants are catalytically inactive. Mutation of the two other cysteines of the protein did not result in inactivation. We thus conclude that the (4Fe-4S) cluster has, in the wild type protein, only three cysteine ligands and a fourth still unidentified ligand.  相似文献   

6.
One of the two nonidentical subunits of ribonucleotide reductase from Escherichia coli, protein B2, contains an organic free radical required for enzyme activity. Earlier isotope subtitution experiments (Sj?berg, B.-M., Reichard, P. Gr?slund, A., and Ehrenberg, A. (1977) J. Biol. Chem. 252, 536-541) demonstrated that the radical was localized to a tyrosine residue of the enzyme and suggested that the spin density of the radical was centered at the methylene carbon of tyrosine. However, additional isotope substitution experiments now show that the spin density of the radical must be delocalized over the aromatic ring of the tyrosine residue.  相似文献   

7.
The iron center in ribonucleotide reductase from Escherichia coli   总被引:5,自引:0,他引:5  
Ribonucleotide reductase from Escherichia coli consists of two nonidentical subunits, proteins B1 and B2. The active site is made up from both subunits. Protein B2 contains 2 iron atoms and a tyrosyl-free radical, which are essential for the enzymatic activity. The paramagnetic susceptibility of protein B2 has been measured over the temperature range 30-200 K. A deviation from the Curie law is observed at high temperatures, consistent with a structure of an antiferromagnetically coupled pair of high spin Fe(III) with an exchange coupling -J = 108(-20)+25 cm-1. Electronic spectra are resolved into components from the iron center and the radical. A band at 600 nm is clearly identified and shown to have contributions from both components. The electronic absorptions of the tyrosyl radical of protein B2 are closely similar to those reported for phenoxy radicals of tyrosine and tritertiary butyl phenol. Determinations by EPR of the amount of free radical suggest the possibility of more than one radical per active protein B2 molecule. Reconstitution of the active site from apoprotein B2 and Fe(II) is only observed in the presence of oxygen. With Fe(III), no reconstitution is obtained. The additional physical data on the iron center of protein B2 strengthen the analogy with oxidized forms of hemerythrin. The most likely structure is an antiferromagnetically coupled pair of high spin Fe(III), possibly with a bridging oxo-group.  相似文献   

8.
Evidence for a new ribonucleotide reductase in anaerobic E. coli   总被引:4,自引:0,他引:4  
E. coli conditional iron-containing ribonucleotide reductase (Fe-RR) mutant and wild type strains grew anaerobically under conditions when Fe-RR was absent or inhibited. Furthermore, a B12-independent, hydroxyurea-resistant RR activity, unaffected by monoclonal antibodies against either subunit B1 or B2 of Fe-RR, was partially purified from anaerobically grown mutant and wild-type E. coli. These findings indicate that E. coli has a second RR representative of a new class of RRs and that this is the first report where both in vivo and in vitro evidence is presented. It is probable that other facultative anaerobes also have two different RRs such that an optimal supply of deoxyribonucleotides is maintained under all growth conditions.  相似文献   

9.
10.
11.
A C-terminally truncated form of protein B2, the homodimeric small subunit of ribonucleotide reductase from Escherichia coli, was found as the result of an apparently specific proteolysis. Truncated homodimers contain an intact binuclear iron center and a normal tyrosyl radical but have no binding capacity for the other ribonucleotide reductase subunit, protein B1, and are consequently enzymatically inactive. Heterodimers, consisting of one full-length and one truncated polypeptide, formed spontaneously during a chelation-reconstitution cycle and were easily separated from the two homodimeric variants. The heterodimeric form of B2 shows a weak interaction with the B1 subunit resulting in low enzyme activity. Using heterodimers containing deuterated tyrosine on the full-length side and protonated tyrosine on the truncated side, we could demonstrate that the tyrosyl radical was randomly generated in one or the other of the two polypeptide chains of the heterodimeric B2 subunit. The small subunit of ribonucleotide reductase thus conforms to a half-site reactivity.  相似文献   

12.
The UV-mediated induction of recA and sfiA genes in Escherichia coli cells with distinct levels of dATP has been studied. Low levels of dATP were obtained by using either a temperature-sensitive ribonucleotide (RDP) reductase-deficient (nrdA) mutant or a wild-type strain treated with hydroxyurea. High pools of dATP were achieved by using a plasmid overproducing RDP reductase. The results obtained show that expression of the recA and sfiA genes was inhibited neither in the UV-irradiated nrdA mutant at 42 degrees C nor in the wild-type strain in the presence of hydroxyurea. Likewise, the increase of the dATP pool did not enhance recA and sfiA gene expression after UV irradiation. All these data suggest that the basal level of dATP is not a limiting factor in the process of induction of the SOS system in Escherichia coli.  相似文献   

13.
The B2 subunit of ribonucleotide reductase from Escherichia coli contains a stable tyrosyl free radical and an antiferromagnetically coupled dimeric iron center with high-spin ferric ions. The tyrosyl radical is an oxidized form of tyrosine-122. This study shows that the B2 protein has a fully reduced state, denoted reduced B2, characterized by a normal nonradical tyrosine-122 residue and a dimeric ferrous iron center. Reduced B2 can be formed either from active B2 by a three-electron reduction in the presence of suitable mediators or from apoB2 by addition of two equimolar amounts of ferrous ions in the absence of oxygen. The oxidized tyrosyl radical and the ferric iron center can be generated from reduced B2 by the admission of air. The tyrosyl radical can be selectively reduced by one-electron reduction in the presence of a suitable mediator, yielding metB2, a form that seems identical with the form resulting from treatment of active B2 with hydroxyurea. 1H NMR was used to characterize the paramagnetically shifted resonances associated with the reduced iron center. Prominent resonances were observed around 45 ppm (nonexchangeable with solvent) and 57 ppm (exchangeable with solvent) at 37 degrees C. From the temperature dependence of the chemical shifts of these resonances it was concluded that the ferrous ions in reduced B2 are only weakly, if at all, antiferromagnetically coupled. By comparison with data on the similar iron center of deoxyhemerythrin it is suggested that the 57 ppm resonance should be assigned to protons in histidine ligands of the iron center.  相似文献   

14.
Ribonucleotide reductase has been shown to be associated with the DNA-membrane complex in Escherichia coli TAU- cells. The membrane-bound enzyme has been released in a soluble form using a combined treatment of 1% sarcosyl (pH 8.0) and 1% sodium deoxycholate (pH 6.5). Allotropic differences in the modulatory effects of ATP, Mg2+, EDTA and dithiothreitol on the membrane-bound and solubilized enzyme activity are discussed.  相似文献   

15.
Ribonucleotide reductase is a heterodimeric (alpha(2)beta(2)) allosteric enzyme that catalyzes the conversion of ribonucleotides to deoxyribonucleotides, an essential step in DNA biosynthesis and repair. In the enzymatically active form aerobic Escherichia coli ribonucleotide reductase is a complex of homodimeric R1 and R2 proteins. We use electrochemical studies of the dinuclear center to clarify the interplay of subunit interaction, the binding of allosteric effectors and substrate selectivity. Our studies show for the first time that electrochemical reduction of active R2 generates a distinct Met form of the diiron cluster, with a midpoint potential (-163 +/- 3 mV) different from that of R2(Met) produced by hydroxyurea (-115 +/- 2 mV). The redox potentials of both Met forms experience negative shifts when measured in the presence of R1, becoming -223 +/- 6 and -226 +/- 3 mV, respectively, demonstrating that R1-triggered conformational changes favor one configuration of the diiron cluster. We show that the association of a substrate analog and specificity effector (dGDP/dTTP or GMP/dTTP) with R1 regulates the redox properties of the diiron centers in R2. Their midpoint potential in the complex shifts to -192 +/- 2 mV for dGDP/dTTP and to -203 +/- 3 mV for GMP/dTTP. In contrast, reduction potential measurements show that the diiron cluster is not affected by ATP (0.35-1.45 mm) and dATP (0.3-0.6 mm) binding to R1. Binding of these effectors to the R1-R2 complex does not perturb the normal docking modes between R1 and R2 as similar redox shifts are observed for ATP or dATP associated with the R1-R2 complex.  相似文献   

16.
17.
The B1 subunit of Escherichia coli ribonucleotide reductase is coded for by the nrdA gene, of determined structure. Protein B1 contains two types of allosteric binding sites. One type (h-sites) determines the substrate specificity while the other type (l sites) governs the overall activity. The effectors dGTP and dTTP bind only to the h-sites while dATP and ATP bind to both the h- and the l-sites. Protein B1 has been photoaffinity-labeled with radioactive dTTP and dATP using direct UV irradiation. Following tryptic digestion of labeled protein B1 only one peptide labeled with dTTP was found, while several peptides were labeled with dATP. One of the dATP-labeled peptides had chromatographic properties very similar to that labeled with dTTP and this peptide most likely forms part of the h-site of protein B1. Labeling of the l-site could not be conclusively shown since substantial non-specific labeling occurred with dATP. CNBr fragments of dTTP-labeled protein B1 were used to localize the region of nucleotide binding in the deduced primary structure of the nrdA gene. The dTTP label was further localized to a tryptic octapeptide with the sequence Ser-X-Ser-Gln-Gly-Gly-Val-Arg. The labeled amino acid was found at position 2, but the residue itself could not be directly identified. Unexpectedly, this sequence was not found in the earlier reported primary structure of the nrdA gene. However, a recent revised structure of the gene identifies the labeled residue as Cys-289 and fully confirms the rest of the peptide sequence. Thus the present result clearly defines one of the allosteric binding sites in ribonucleotide reductase.  相似文献   

18.
 Protein R2, the small component of ribonucleotide reductase from Escherichia coli, contains a diferric center and a catalytically essential tyrosyl radical. In vitro, this radical can be produced in the protein from two inactive forms, metR2, containing an intact diiron center and lacking the tyrosyl radical, and apoR2, lacking both iron and the radical. While activation of apoR2 requires only a source of ferrous iron and exposure to O2, activation of metR2 was achieved using a multienzymatic system consisting of an NAD(P)H:flavin oxidoreductase, superoxide dismutase and a poorly defined protein fraction, named fraction b (Fontecave M, Eliasson R, Reichard P (1987) J Biol Chem 262 : 12325–12331). In both reactions, reduced R2, containing a diferrous center, is a key intermediate which is subsequently converted to active R2 during reaction with O2. By in vivo labeling of E. coli with radioactive 59Fe, we show that fraction b contains iron. Depletion of the iron in fraction b inactivates it, and fraction b can be substituted for by ferric citrate solutions. Furthermore, aqueous Fe2+ in the presence of dithiothreitol is able to convert metR2 into reduced R2. Therefore we propose that the function of fraction b is to provide, in association with the flavin reductase, ferrous iron for reduction of the endogenous diiron center. Since fraction b is not a single well-defined protein, it remains to be shown whether, in vivo, that function resides in a specific protein. Exogenous iron can thus participate in activation of both apoR2 and metR2, but it is incorporated into R2 only in the former case. A unifying mechanism is proposed. Received: 13 November 1996 / Accepted: 3 April 1997  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号