首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 427 毫秒
1.
A tomato ( Lycopersicon esculentum Mill. cv. Pera) callus culture tolerant to NaCl was obtained by successive subcultures of NaCl-sensitive calli in medium supplemented with 50 m M NaCl. NaCl-tolerant calli grew better than NaCl-sensitive calli in media supplemented with 50 and 100 m M NaCl. Analysis of callus ion content showed a strong increase in Na+ and Cl both in NaCl-tolerant and -sensitive calli grown in media containing NaCl for one subculture. Cells from NaCl-tolerant calli showed a higher H+ extrusion activity than those from NaCl-sensitive calli grown for one subculture in the presence of NaCl. The inhibition of H+ extrusion by NaCl-sensitive cells was correlated with an inhibition of microsomal vanadate-sensitive H+-ATPase (EC 3.6.1.35) and ATP-dependent H+ transport, while the stimulation of H+ extrusion by cells tolerant to 50 m M NaCl was correlated with an increase in plasma membrane ATP-dependent H+ transport. The increase of ATP-dependent H+ extrusion in plasma membranes isolated from 50 m M NaCl-tolerant calli was not a result of stimulation of a vanadate-sensitive ATP hydrolytic activity or an increase in passive permeability to H+. Relative to NaCl-sensitive calli, plasma membrane H+-ATPase from calli tolerant to 50 m M NaCl showed a lower Km for Mg2+-ATP. Our results indicate that tolerance of tomato calli to 50 m M NaCl increases the affinity of plasma membrane H+-ATPase for the substrate ATP and stimulates the H+-pumping activity of this enzyme without modifying its phosphohydrolytic activity.  相似文献   

2.
Light-triggered membrane potential changes in cells of a liverwort Anthoceros are greatly enhanced by the ionophorous uncouplers nigericin and monesin. Stimulation of the light-triggered electrical response (LTER) by nigericin occurred concomitantly with inhibition of a slow decline in the chlorophyll fluorescence, which suggests that the transmembrane pH gradient in thylakoids is not essential for generation of LTER at the plasma membrane. The extent of monensin-stimulated LTER remained high under a diminished driving force for the ionophore-induced proton-cation exchange across the plasma membrane (elevation of the external Na+ concentration from 1 to 50 m M ), which indicates that energy uncoupling in chloroplasts is more related to the electric response enhancement than the induction of the H+/K+(Na+) exchange at the plasma membrane. Enhancement of LTER by ionophores occurs in parallel with stimulation of light-triggered pH changes (alkalinization) in the vicinity of the cell surface, which suggests an association of trans-membrane H+ fluxes with LTER. The results are consistent with the hypothesis that illumination produces a temporary inhibition of the plasma membrane H+ pump with a subsequent activation of gated channels and transient rapid depolarization of the cell.  相似文献   

3.
Transport across the plasma membrane is driven by an electrochemical gradient of H+ ions generated by the plasma membrane proton pump (H+-ATPase). Random mutants of Arabidopsis H+-ATPase AHA1 were isolated by phenotypic selection of growth of transformed yeast cells in the absence of endogenous yeast H+-ATPase (PMA1). A Trp-874-Leu substitution as well as a Trp-874 to Lys-935 deletion in the hydrophilic C-terminal domain of AHA1 conferred growth of yeast cells devoid of PMA1. A Trp-874-Phe substitution in AHA1 was produced by site-directed mutagenesis. The modified enzymes hydrolyzed ATP at 200–500% of wild-type level, had a sixfold increase in affinity for ATP (from 1.2 to 0.2 mM; pH 7.0), and had the acidic pH optimum shifted towards neutral pH. AHA1 did not contribute significantly to H+ extrusion by transformed yeast cells. The different species of aha1, however, displayed marked differences in initial rates of net H+ extrusion and in their ability to sustain an electrochemical H+ gradient. These results provide evidence that Trp-874 plays an important role in auto-inhibition of the plant H+-ATPase and may be involved in controlling the degree of coupling between ATP hydrolysis and H+ pumping. Finally, these results demonstrate the usefulness of yeast as a generalized screening tool for isolating regulatory mutants of plants transporters.  相似文献   

4.
The regulation of the H+-ATPase of plasma membrane is a crucial point in the integration of transport processes at this membrane. In this work the regulation of H+-ATPase activity induced by changes in turgor pressure was investigated and compared with the stimulating effect of fusicoccin (FC). The exposure of cultured cells of Arabidopsis thaliana L. (ecotype Landsberg 310–14-2) to media containing mannitol (0. 15 or 0. 3 M ) or polyethylene glycol 6000 (PEG) (15. 6% or 22% w/v) resulted in a decrease in the turgor pressure of the cells and in a strong stimulation of H+ extrusion in the incubation medium. The osmotica-induced H+ extrusion was (1) inhibited by the inhibitor of plasma membrane H+-ATPase, erythrosin B (EB), (2) dependent on the external K+ concentration, (3) associated with a net K+ influx, and (4) lead to an increase of cellular malate content. These results show that the reduction of external osmotic potential stimulates the activity of plasma membrane H+-ATPase
The effect of mannitol was only partially inhibited by treatments with cycloheximide (CH) and cordycepin, which block protein and mRNA synthesis, respectively. All the effects of osmotica were qualitatively and quantitatively similar to those induced by 5 μ M FC. However, when FC and mannitol (or PEG) were fed together, their effects on H+ extrusion appeared synergistic, irrespective of whether FC was present at suboptimal or optimal concentrations. This behaviour suggests that the modes of action of FC and of the osmotica on H+-ATPase activity differ at least in some step(s)  相似文献   

5.
The effect of aluminum on dimorphic fungi Yarrowia lipolytica was investigated. High aluminum (0.5–1.0 mM AlK(SO4)2) inhibits yeast–hypha transition. Both vanadate-sensitive H+ transport and ATPase activities were increased in total membranes isolated from aluminum-treated cells, indicating that a plasma membrane H+ pump was stimulated by aluminum. Furthermore, Al-treated cells showed a stronger H+ efflux in solid medium. The present results suggest that alterations in the plasma membrane H+ transport might underline a pH signaling required for yeast/hyphal development. The data point to the cell surface pH as a determinant of morphogenesis of Y. lipolytica and the plasma membrane H+-ATPase as a key factor of this process.  相似文献   

6.
Plasma membrane vesicles were purified from 8-day-old oat ( Avena sativa L. cv. Brighton) roots in an aqueous polymer two-phase system. The plasma membranes possessed high specific ATPase activity [ca 4 μmol P1 (mg protein)−1 min−1 at 37°C]. Addition of lysophosphatidylcholine (lyso-PC) produced a 2–3 fold activation of the plasma membrane ATPase, an effect due both to exposure of latent ATP binding sites and to a true activation of the enzyme. Lipid activation increased the affinity for ATP and caused a shift of the pH optimum of the H+ -ATPase activity to 6.75 as compared to pH 6.45 for the negative H+-ATPase. Activation was dependent on the chain length of the acyl group of the lyso-PC, with maximal activition obtained by palmitoyl lyso-PC. Free fatty acids also activated the membrane-bound H+-ATPase. This activation was also dependent on chain length and to the degree of unsaturation, with linolenic and arachidonic acid as the most efficient fatty acids. Exogenously added PC was hydrolyzed to lyso-PC and free fatty acids by an enzyme in the plasma membrane preparation, presumably of the phospholipase A type. Both lyso-PC and free fatty acids are products of phospholipase A2 (EC 3.1.1.4) action, and addition of phospholipase A2 from animal sources increased the H+-ATPase activity within seconds. Interaction with lipids and fatty acids could thus be part of the regulatory system for H+-ATPase activity in vivo, and the endogenous phospholipase may be involved in the regulation of the H+-ATPase activity in the plasma membranne.  相似文献   

7.
The effect of boron excess and deficiency on H+ efflux from excised roots from sunflower ( Heliarahus annuus L. cv. Enano) seedlings and on plasma membrane H+-ATPase (EC 3.6.1.35) in isolated KI-washed microsomes has been investigated. When seedlings were grown in media with toxic levels of H3BO3 (5 m M ) or without added boron and exposed to light conditions, an inhibition of the capacity for external acidification by excised roots was observed as compared to roots from seedlings grown with optimal H3BO3 concentration (0.25 m M ). Toxic and deficient boron conditions also inhibited the vanadate-sensitive H+-ATPase of microsomes isolated from the roots. The mechanism of boron toxicity was investigated in vitro with microsorne vesicles. A strong effect of boron on the vanadate-sensitive, ATP-dependent H+ transport was found, but the vanadate-sensitive phospho-bydrolase activity was not affected. These results suggest that boron could exert an effect on the plasma membrane properties, directly or indirectly regulating, proton transport.  相似文献   

8.
The activity of the H+-pyrophosphatase (H+-PPase) was characterized in microsomes from 24-h-old radish ( Raphanus sativus L., ev. Tondo Rosso Quarantino) seedlings, which are virtually devoid of the tonoplast H+-ATPase. The H+-PPase was localized to membranes which roughly comigrated with the plasma membrane in a sucrose density gradient, but clearly separated from plasma membrane when microsomes were partitioned in an aqueous dextran-polyethylene glycol two-phase system. The H+-PPase activity was strictly dependent on Mg2+ and on the presence of a monovalent cation (K+=Rb+=NH3+Cs+≫Na+Li+) and was insensitive to anions such as Cl−, Br−, NO3− and SO42-. It was inhibited by F−, imidodiphosphate and Ca2+. It had a pH optimum between pH 7.5 and 8.5 and was saturated by low concentrations of pyrophosphate (half saturation at 30 μ M pyrophosphate). All of these characteristics are identical to those reported for the tonoplast H+-PPase from various plant materials. The functional molecular weight of the H+-PPase, measured with the radiation-inactivation technique was 96 kDa.  相似文献   

9.
10.
11.
Modulation of proton extrusion and ATP-dependent H+ transport through the plasma membrane in relation to the presence of 14-3-3 proteins in this membrane in response to osmotic shock was studied in tomato ( Lycopersicon esculentum Mill. cv. Pera) cell cultures. In vivo H+ extrusion by cells was activated rapidly and significantly after adding 100 m M NaCl, 100 m M KCl, 50 m M Na2SO4, 1.6% sorbitol or 2 µ M fusicoccin to the medium. The increase in H+ extrusion by cells treated with 100 m M NaCl was correlated with an increase of H+ transport by the plasma membrane H+-ATPase (EC 3.6.1.35), but not with changes in ATP hydrolytic activity of this enzyme, suggesting an increased coupling ratio of the enzyme. Immunoblot experiments showed increased amounts of 14-3-3 proteins in plasma membrane fractions isolated from tomato cells treated with 100 m M NaCl as compared to control cells without changing the amount of plasma membrane H+-ATPase. Together, these data indicate that in tomato cells an osmotic shock could enhance coupling between ATP hydrolysis and proton transport at the plasma membrane through the formation of a membrane 14-3-3/H+-ATPase complex.  相似文献   

12.
The preference of paddy rice for NH4+ rather than NO3- is associated with its tolerance to low pH since a rhizosphere acidification occurs during NH4+ absorption. However, the adaptation of rice root to low pH has not been fully elucidated. This study investigated the acclimation of plasma membrane H+-ATPase of rice root to low pH. Rice seedlings were grown either with NH4+ or NO3-. For both nitrogen forms, the pH value of nutrient solutions was gradually adjusted to pH 6.5 or 3.0. After 4 d cultivation, hydrolytic H+-ATPase activity, V max, K m, H+-pumping activity, H+ permeability and pH gradient across the plasma membrane were significantly higher in rice roots grown at pH 3.0 than at 6.5, irrespective of the nitrogen forms supplied. The higher activity of plasma membrane H+-ATPase of adapted rice roots was attributed to the increase in expression of OSA1, OSA3, OSA7, OSA8 and OSA9 genes, which resulted in an increase of H+-ATPase protein concentration. In conclusion, a high regulation of various plasma membrane H+-ATPase genes is responsible for the adaptation of rice roots to low pH. This mechanism may be partly responsible for the preference of rice plants to NH4+ nutrition.  相似文献   

13.
The uptake of hexoses in higher plant cells is thought to be catalyzed by an H+/hexose contrasporter in the plasma membrane. Transport studies with isolated plant vacuoles indicate that, at the tonoplast, a second hexose transporter is located with properties different from the plasma membrane transporter. Recently membrane vesicles of high purity and defined orientation have been used for a more rigorous individual characterization of these two carriers. Concomitantly, a cDNA for the inducible H+/hexose cotransporter of the green alga Chlorella has been sequenced and shown to exhibit homology to a group of hexose transporters (for facilitated diffusion) of other eukaryotic and prokaryotic organisms. With a probe derived from the Chlorella sequence, the first plant gene for an H+/hexose contransporter ( Arabidopsis thaliana ) has been isolated, opening the route to molecular studies of structure, function and evolution of the hexose transporters of higher plants. The present review discusses recent work on the kinetic characterization and identification of the higher plant plasma membrane and tonoplast hexose transporters as well as their respective cellular functions. Furthermore, perspectives for future research on the plant hexose transporters are outlined.  相似文献   

14.
NaCl-induced changes in the accumulation of message for the 70 kDa subunit of the tonoplast H+-ATPase and plasma membrane H+-ATPase were studied in hydroponically grown plants of Lycopersicon esculentum Mill. cv. Large Cherry Red. There was increased accumulation of message for the 70 kDa (catalytic) subunit of the tonoplast H+-ATPase in expanded leaves of tomato plants 24 h after final NaCl concentrations were attained. This was a tissue-specific response; levels of this message were not elevated in roots or in young, unexpanded leaves. The NaCl-induced accumulation of this message was transient in the expanded leaves and returned to control levels within 7 days. The temporal and spatial patterns of NaCl-induced accumulation of message for the plasma membrane H+-ATPase differed from the patterns associated with the 70 kDa subunit of the tonoplast H+-ATPase. NaCl-induced accumulation of the plasma membrane H+-ATPase message occurred in both roots and expanded leaves. Initially accumulation of the plasma membrane H+-ATPase message was greater in root tissue than in expanded leaves, but increased to higher levels in expanded leaves after 7 days. These results suggest that increased expression of the tonoplast H+-ATPase is an early response to salinity stress and may be associated with survival mechanisms, rather than with long-term adaptive processes.  相似文献   

15.
The effects of ionizing radiation, used in post-harvest treatment of fruit and vegetables. were investigated on cultured apple cells ( Pyrus malus L. cv. Royal Red) on a short-term period. Irradiation (2 kGy) induced an increase of passive ion effluxes from cells and a decrease of cell capacity to regulate external pH. These alterations are likely due to effects on plasma membrane structure and function and were further investigated by studying the effects of irradiation on plasma membrane H+-ATPase activity. Plasma membrane-enriched vesicles were prepared and the H+-ATPase activity was characterized. Irradiation of the vesicles induced a dose dependent inhibition of H+-ATPase activity. The loss of enzyme activity was immediate, even at low doses (0.5 kGy), and was not reversed by the addition of 2m M dithiothreitol. This inhibition may be the result of an irreversible oxidation of enzyme sulfhydryl moieties and/or the result of changes induced within the lipid bilayer affecting the membrane-enzyme interactions. Further analysis of the H+-ATPase activity was carried out on vesicles obtained from irradiated cells confirming the previous results. In vivo recovery of activity was not observed within 5 h following the treatment, thus explaining the decrease of cell capacity to regulate external pH.
This rapid irreversible inhibition of the plasma membrane H+-ATPase must be considered as one of the most important primary biochemical events occurring in irradiated plant material.  相似文献   

16.
17.
The generally rhizotoxic ion Al3+ often enhances root growth at low concentrations. The hypothesis that Al3+ enhances growth by relieving H+ toxicity was tested with wheat seedlings ( Triticum aestivum L.). Growth enhancement by Al3+ only occurred under acidic conditions that reduced root elongation. Al3+ increased cell membrane electrical polarity and stimulated H+ extrusion. Previous investigations have shown that Al3+ decreases solute leakage at low pH and that the alleviation of H+ toxicity by cations appears to be a general phenomenon with effectiveness dependent upon charge (C3+>C2+>Cl+). Alleviation of one cation toxicity by another toxic cation appears to be reciprocal so that Al3+ toxicity is relieved by H+. It has been argued previously that this latter phenomenon accounts for the apparent toxicity of ALOH2+ and Al(OH)+2. Reduction of cell-surface electrical potential by the ameliorative cation may reduce the cell-surface activity of the toxic cation.  相似文献   

18.
Plasma membranes of the marine cyanobacterium Spirulina subsalsa were tested for ATPase activity, and for involvement in salt stress. Transition of cells from saline to hypersaline medium enhances the respiratory activity associated with extrusion of Na+ and Cl, and persisting salt stress induces synthesis of respiratory enzymes in the plasma membranes. The membranes possess an ATPase, specific for ATP and Mg2+ and sensitive to orthovanadate and dicyclohexylcarbodiimide. Immunoblot analysis of plasma membrane polypeptides from Spirulina subsalsa with anti- Arabidopsis H+-ATPase serum identified a single polypeptide of 100 kDa, which cross-reacted with the antibodies. An unusual feature of this ATPase is a specific stimulation by Na+ ions. Prolonged adaptation of S. subsals cells to hypersaline conditions induced an increase in ATPase activity in subsequent plasma membrane preparations, as well as a higher content of the 100 kDa polypeptide. It is suggested that the ATPase investigated is an H+-pump, which is involved in extrusion of Na+ and in conferring resistance to salt stress.  相似文献   

19.
Although temperature-induced changes in membrane structure and activity seem to be central to chilling stress perception, the specific details of temperature effects on plant nutrient acquisition remain obscure. In this study, we have undertaken a comparative study of low temperature effects on the activity of plasma membrane transporters of different ions in corn ( Zea mays L.) leaf and root tissues by non-invasive measurements of net ion fluxes using ion-selective microelectrode (the MIFE) technique. Kinetics of net H+, Ca2+, K+, Na+,     and Cl fluxes were measured as plant tissues recovered after short-term (3 h) chilling stress. The major findings can be summarized as follows: (1) The critical temperatures, under which the recovery of the activity of plasma membrane transporters took place, were found to be the same for all ions measured and are likely to be associated with the phase transition of membrane lipids. (2) The most pronounced was the reduction in net uptake of K+ and     (3) Chilling treatment caused a significant net influx of Cl and Na+ in the leaf tissue. (4) For the same species, the critical temperatures for membrane-transport processes in roots were 2–2.5°C lower than in leaves. Possible physiological significance of these findings is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号