首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method is described for a rapid and systematic light microscopic documentation of Golgi impregnated neurons while they are being sectioned for electron microscopy. A drawing under the light microscope of a Golgi impregnated neuron is made first; subsequently thin door of the tissue containing this neuron are cut in the same plane as for light microscopy. During thin sectioning the chuck containing the block is taken out of the ultramicrotome at regular intervals and placed in a special device under a light microscope. The neuron is photographed to record the stage of sectioning. Comparison of the micrographs indicates which put of the and its dendritic tree are contained in the thin sections. No semithin sections are used and therefore no material is lost for reconstruction.  相似文献   

2.
A pre-embedding immunocytochemical technique is described for combined light and electron microscope study of peptidergic neurons in the central nervous system. The protocol is especially designed to overcome the sampling problems inherent in electron microscope study of structures, such as luteinizing hormone-releasing hormone (LHRH) neurons, that are scattered individually across large brain regions. The fixation methods outlined for several mammalian species include immersion and vascular perfusion with acrolein. Fine-structural preservation and LHRH immunoreactivity obtained with this fixative are compared to results with more conventional fixatives. Vibratome sectioning and a "pretreatment" regime, which prepare the tissues for immunocytochemistry, are described. Immunocytochemical labeling is done with free-floating sections and the peroxidase-antiperoxidase unlabeled antibody enzyme technique. Techniques are also described for the subsequent processing of immunoreacted sections for electron microscopy. These methods ensure that the processed sections are readily scanned by light microscopy, so that regions containing immunoreactive structures can be specifically chosen for electron microscope analysis. Sample electron micrographs are shown that illustrate some fine structural features of LHRH neurons in rats, bats, ferrets, and monkeys, as revealed with the techniques described.  相似文献   

3.
Summary The pollen grain of cotton (Gossypium hirsutum) was examined histochemically at the light and electron microscope level. The cytoplasm of the pollen contains an unusual storage unit which consists of a pocket of endoplasmic reticulum (ER) containing lipid droplets and dictyosome vesicles. The ER pockets are large enough to be seen with the light microscope if thin enough sections are used (0.3–1.5). The results of the histochemical analyses show that the dictysome vesicles are rich in carbohydrate and contain protein and lipid as well. The ER contains large amounts of protein which may be arginine rich. Some carbohydrates may also be present in the ER. The ER is covered with ribosomes so that the pockets are unusually rich storage units containing abundant protein, carbohydrate, lipid and RNA. The light microscope localization of carbohydrates was confirmed by the periodic acid-silver method. Other storage units in the cytoplasm were also studied. A new method for the embedding of plant tissue for thin sectioning for light microscopy is presented.This work was supported by a Public Health Service fellowship 5-F2-GM-22, 031-02 from the National Institute of General Medical Sciences, by NSF grant GB 3460, by NIH grant 5-RO1-CA 0356-10 and by the Miller Institute for Basic Science.  相似文献   

4.
Summary After application of a rapid, selective silver impregnation procedure for light (LM) and electron (EM) microscopy, individual neurons are distinguishable by a light silver precipitation. The silver content is sufficient that entire nerve cells can be observed light microscopically; on the other hand, electron microscopically the cytological details are still visible. Brains of mice were fixed by phosphate-buffered aldehyde perfusion, and pieces of tissue left in a 1 % K2Cr2O7 solution for 13 h before impregnation in a 0.5 % AgNO3 solution for 2h. Thick sections (30–50 m) of the impregnated tissue were cut; from these sections, suitably stained neurons were dissected out and re-embedded for ultrathin sectioning, thereby allowing observations on the same neurons at the EM level. A thin silver deposit was observed along the delimiting neuronal membrane, the microtubules and the smooth ER, including the spinal apparatus of the dendritic spines. The fine cytoplasmic details of the impregnated neurons and the surrounding tissue are well preserved and, therefore, suitable for subsequent determination of synaptic relationships of the impregnated neurons with the adjacent neuronal elements.  相似文献   

5.
A technic is described for obtaining thin sections of animal tissue suitable for electron microscopy. Fixation is accomplished by perfusion of the whole animal with neutral formalin or alcohol formalin followed by immersion of pieces to be examined in neutralized osmium tetroxide. The embedding medium is a mixture of equal parts of n-butyl and ethyl methacrylate polymerized by ultra-violet light. Sectioning is done by means of a glass knife on an International ultra-thin sectioning microtome set at 0.1 μ. The sections are floated on warm water to spread, then placed on Formvar-coated grids, dried, and put into toluene to dissolve the plastic. The technic produces routinely usable, thin sections that show a minimum of damage owing to fixation, embedding, and sectioning.  相似文献   

6.
Histamine content of peritoneal and tissue mast cells of growing rats   总被引:2,自引:0,他引:2  
Summary p-Phenylenediamine/pyrocatechol mixture (PPD-PC) was evaluated as a reagent for the ultracytochemical demonstration of retrograde axonal transport of horseradish peroxidase (HRP). HRP crystals were applied to the proximal stumps of the severed infraorbital nerves in rats. After 48 h the rats were sacrificed by perfusion, and the trigeminal ganglia ipsilateral to the severed nerves were processed for HRP cytochemistry and then prepared for electron microscopy. PPD-PC was rapidly oxidized in HRP-labeled neurons to form a dark brown-black osmiophilic reaction product which was more readily visible than the DAB product in the sections. This facilitated selection by light microscopy of areas in the epoxy wafers for ultrathin sectioning. In thin sections viewed under the electron microscope, the osmicated electron opaque PPD-PC reaction product was present in membrane-bound structures including smooth endoplasmic reticulum and granules of various sizes. The PPD-PC reaction product formed after 10-min incubation appeared to be more electron opaque than the DAB reaction product formed after 20 min. PPD-PC was found to be much less readily oxidized than DAB by endogenous hemoproteins. This methodology facilitated the ultracytochemical localization of HRP in neurons following retrograde axonal transport.Supported by NIH Grants DE 04730, DE 02668 and DE 00288 from the National Institute for Dental Research, NIH Grant RR 0533 from the Division of Research Facilities and Resources, and a grant to the Neurobiology Program from the Alfred P. Sloan Foundation  相似文献   

7.
The silver chromate precipitate present in neurons impregnated according to the Golgi-rapid and Golgi-Kopsch procedures can be stabilized by treatment with a photographic developer. In a complementary light microscopic study the stabilizing properties of various photographic developers were tested. Kodalith, Elon-ascorbic acid, HC-110, D-19 and Neutol proved to be the most successful. In the present electron microscopic study, we studied the distribution, shape and size of the particles found in Golgi-rapid and Golgi-Kopsch-impregnated neurons by treatment with each of these developers and, simultaneously, the effect of the developer on the preservation of the ultrastructural details. The reaction product after developer-treatment of Golgi-rapid material is sufficiently stable to withstand embedding and thin sectioning, whereas in Golgi-Kopsch material additional gold chloride “Honing” is necessary. In Golgi-impregnated, Kodalith-, Elon-ascorbic acid-, or HC-110-treated material the formed particles are small and located in the cytoplasm, limited by the plasma membranes of the impregnated profiles. In Golgi-impregnated, D-19 treated neurons, the formed particles are relatively coarse. The majority of these particles are within cytoplasm, but particles may also lie either across or entirely outside the plasma membranes of the impregnated profiles. A large number of the small particles in Golgi impregnated, Neutol-stabilized neurons can be seen partly or entirely outside the plasma membranes of the impregnated profiles. Good original ultrastructural preservation seems to be unaffected by developer treatment. Treatment of Golgi material with sodium bromide before stabilization (bromide substitution) results in the formation of small silver particles both inside and outside the impregnated profiles. The sodium bromide step of this procedure has an adverse effect on the preservation of ultrastructural detail.  相似文献   

8.
The silver chromate precipitate present in neurons impregnated according to the Golgi-rapid and Golgi-Kopsch procedures can be stabilized by treatment with a photographic developer. In a complementary light microscopic study the stabilizing properties of various photographic developers were tested. Kodalith, Elon-ascorbic acid, HC-110, D-19 and Neutol proved to be the most successful. In the present electron microscopic study, we studied the distribution, shape and size of the particles found in Golgi-rapid and Golgi-Kopsch-impregnated neurons by treatment with each of these developers and, simultaneously, the effect of the developer on the preservation of the ultrastructural details. The reaction product after developer-treatment of Golgi-rapid material is sufficiently stable to withstand embedding and thin sectioning, whereas in Golgi-Kopsch material additional gold chloride "toning" is necessary. In Golgi-impregnated, Kodalith-, Elon-ascorbic acid-, or HC-110-treated material the formed particles are small and located in the cytoplasm, limited by the plasma membranes of the impregnated profiles. In Golgi-impregnated, D-19 treated neurons, the formed particles are relatively coarse. The majority of these particles are within cytoplasm, but particles may also lie either across or entirely outside the plasma membranes of the impregnated profiles. A large number of the small particles in Golgi impregnated, Neutol-stabilized neurons can be seen partly or entirely outside the plasma membranes of the impregnated profiles. Good original ultrastructural preservation seems to be unaffected by developer treatment. Treatment of Golgi material with sodium bromide before stabilization (bromide substitution) results in the formation of small silver particles both inside and outside the impregnated profiles. The sodium bromide step of this procedure has an adverse effect on the preservation of ultrastructural detail.  相似文献   

9.
激光共聚焦显微镜与光学显微镜之比较   总被引:10,自引:1,他引:10  
激光扫描共聚焦显微镜在活细胞的动态检测、光学切片和三维结构重建等方面较光学显微镜有质的飞跃。本文对激光扫描共聚焦显微镜和光学显微镜进行了比较和讨论,并简单介绍多光子激光扫描显微镜。  相似文献   

10.
水稻成熟花药和花粉的结构和组织化学研究   总被引:3,自引:2,他引:3  
用乙二醇甲基丙烯酸脂(简称GMA)和环氧树脂Epon812包埋的薄切片方法对水稻成熟花药和花粉的结构进行了观察,并对各种结构的性质和细胞中的后含物做了细胞化学的分析.对成熟花药的绒毡层膜及乌氏体的研究采用了分离技术,做了显微和超微观察.证明水稻成熟花药壁和花粉除具一般禾本科植物特征外,还揭示了花药壁表皮上可能有硅质,药壁表皮细胞内含有脂类颗粒,药室内壁具纤维素质的纤维状加厚;发现花粉粒中除了贮存有大量淀粉颗粒外,还含有脂类,成熟花粉中营养核与两个精细胞及两个精细胞间联系紧密;并讨论了薄切片的优越性,绒毡层膜的意义及其上细胞印迹的来源.  相似文献   

11.
A Golgi-electron microscope method for insect nervous tissue.   总被引:2,自引:0,他引:2  
Golgi's light microscope method of selective silver impregnation for nervous tissue combined with electron microscopy appears to offer a promising method for working out the detailed anatomy of individual neurons and their connections. Insect nervous tissue is fixed in a mixture of 2% paraformaldehyde and 2 1/2% glutaraldehyde in Millonig's buffer (pH 7.2) before postfixation for 12 hours in a solution brought to pH 7.2 with KOH containing 2% potassium dichromate, 1% osmium tetroxide and 2% D-glucose. The tissue is then transferred to a solution of 4% potassium dichromate for 1 day; and for 1-2 days to a 0.75% silver nitrate solution. After dehydration and embedding in Araldite, 50 mum sections are made. Areas of interest are cut from these sections and re-embedded in silicone molds. Ultrathin sections are then cut and stained with uranyl acetate and lead citrate. The Golgi method described here gives good results at the level of both light and electron microscopy.  相似文献   

12.
Immunohistochemical methods were used for the detection of the amyloid P component in the microfibrils of two regions: the zonule of the eye and the connective tissue of the foot pad in 20- to 50-gm mice. Following fixation by immersion in 4% formaldehyde, the eyes and foot pads were embedded in paraffin, and sections were immunostained for light microscopy by using antiamyloid P component antiserum followed by peroxidase-antiperoxidase procedure. For electron microscopy, formaldehyde-fixed tissues were immunostained for the amyloid P component with protein A-gold by using either thin Lowicryl sections or frozen sections which were then embedded in Epon for thin sectioning. In the zonule of the eye, the light microscope showed that zonular fibers were strongly immunostained for the amyloid P component; there was also weak staining of the nonpigmented ciliary epithelium at the distal end of the fibers and of the zonular lamella at their proximal end. The electron microscope revealed clear-cut immunolabeling of the microfibrils making up zonular fibers as well as of individual microfibrils. In the foot pad, the light microscope detected a weak diffuse staining of connective tissue, whereas the electron microscope showed immunolabeling restricted to microfibrils. It was concluded that the amyloid P component was present in, or associated with, microfibrils. Purified amyloid P component was prepared and examined in the electron microscope after either negative staining or routine processing. After negative staining, it appeared as flat pentagonal units, frequently associated into columns. After routine processing, the units looked like cross sections of microfibrillar tubules. The dimensions of the units matched those of the hypothetical segments of the tubules. It was concluded that this tubule consisted of a column of amyloid P units. The cohesion of the units within the column was likely to be reinforced by the bands present at the surface of microfibrils.  相似文献   

13.
A specimen carrier for processing large numbers of biopsy materials for epoxy embedding and electron microscopy is described. Commercially available 18-mesh stainless steel or 16-mesh aluminum wire screening is used. The screening is cut into 1 × 3-inch strips. One corner is snipped off for orientation purposes. Four drops of warm 4% agar is placed on a prewarmed standard microscopic glass slide. A thin agar support film is formed on the bottom side of the horizontally held wire screen by lightly running it against the agar. Tissue blocks trimmed to 1 mm3 are blotted on filter paper and placed in a prearranged order on the top surface of the support film. A thin top coating of agar is applied on the specimen by touching it with the tip of a pasteur pipette containing warm 4% agar. The agar-screen unit with the mounted specimens is stabilized in 4% buffered formalin and rinsed with Sorenson's phosphate buffer, pH 7.4, with 6.8% sucrose. It is then processed as a unit through routine osmium tetroxide postfixation, alcohol dehydration, and Epon 812 infiltration. The tissue blocks are plucked off the agar support film with fine-tipped tweezers and embedded in individual capsules. No difficulty in thin sectioning was encountered and examination of the sections under the electron microscope showed good infiltration by the epoxy resin.  相似文献   

14.
A technique is described which facilitates histological preparation of multiple tissue specimens for light microscopy. The procedure enables the investigator to separate and label identifiable subgroups from a larger number of specimens in one histological section. After standard fixation, murine esophagi were arranged longitudinally and secured within segments of murine intestine. Markers such as plant fibers and human hairs were threaded alongside the esophagi within each intestinal casing. After standard dehydration and infiltration, several segments of intestine were arranged parallel to each other and at right angles to the intended plane of sectioning and were embedded together in one paraffin block. This method made it possible to assemble onto one microscope slide cross sections of 42 individual esophagi in 6 identifiable subgroups, each containing 7 esophagi.  相似文献   

15.
A sample-grouping technique for paraffin embedments   总被引:1,自引:0,他引:1  
A technique is described which facilitates histological preparation of multiple tissue specimens for light microscopy. The procedure enables the investigator to separate and label identifiable subgroups from a larger number of specimens in one histological section. After standard fixation, murine esophagi were arranged longitudinally and secured within segments of murine intestine. Markers such as plant fibers and human hairs were threaded alongside the esophagi within each intestinal casing. After standard dehydration and infiltration, several segments of intestine were arranged parallel to each other and at right angles to the intended plane of sectioning and were embedded together in one paraffin block. This method made it possible to assemble onto one microscope slide cross sections of 42 individual esophagi in 6 identifiable subgroups, each containing 7 esophagi.  相似文献   

16.
p-Phenylenediamine/pyrocatechol mixture (PPD-PC) was evaluated as a reagent for the ultracytochemical demonstration of retrograde axonal transport of horseradish peroxidase (HRP). HRP crystals were applied to the proximal stumps of the severed infraorbital nerves in rats. After 48 h the rats were sacrificed by perfusion, and the trigeminal ganglia ipsilateral to the severed nerves were processed for HRP cytochemistry and then prepared for electron microscopy. PPD-PC was rapidly oxidized in HRP-labeled neurons to form a dark brown-black osmiophilic reaction product which was more readily visible than the DAB product in the sections. This facilitated selection by light microscopy of areas in the epoxy wafers for ultrathin sectioning. In thin sections viewed under the electron microscope, the osmicated electron opaque PPD-PC reaction product was present in membrane-bound structures including smooth endoplasmic reticulum and granules of various sizes. The PPD-PC reaction product formed after 10-min incubation appeared to be more electron opaque than the DAB reaction product formed after 20 min. PPD-PC was found to be much less readily oxidized than DAB by endogenous hemoproteins. This methodology facilitated the ultracytochemical localization of HRP in neurons following retrograde axonal transport.  相似文献   

17.
Experiments indicate that osmic-fixed, plastic-embedded sections are suitable for examination in the light microscope. Nuclei, mitochondia, cellular membranes and cytoplasmic granules are readily demonstrable by phase microscopy. Connective tissue stains permit the identification of elastic and collagenous fibers. Glycogen and other carbohydrate-containing structures are demonstrable by the periodic acid-Schiff and the ammoniacal silver nitrate procedures. It is, therefore, possible to cross-check individual structures by comparing alternate thick and thin sections, examined in the light microscope and electron microscope respectively. Several other advantages pertain to plastic embedded tissues. The sections compare favorably in translucency and in their lack of distortion with material embedded in celloidin, yet the procedure is simpler and much more rapid. Sections of any desired thinness can be prepared, and alternate thick and thin sections are easily forthcoming. When examined in the phase-contrast microscope, mitochondrial preparations become routinely available without the uncertainties of most of the mitochondrial staining methods. It appears, therefore, that plastic embedding should find a useful place among the methods for light microscopy as well as in the armamentarium of the electron microscopist.  相似文献   

18.
Deterioration of Golgi impregnation begins immediately after impregnated tissue blocks are sectioned with the Vibratome. The first signs of deterioration are fading of delicate impregnated processes, the disruption and fragmentation of dendrites, and, eventually, fading of entire neurons. These changes can be prevented by stabilization, i.e., by converting the water soluble silver chromate Golgi precipitate into metallic silver or by replacing the silver with some other dense, insoluble material. A technique is described using photographic developers to treat Vibratome sections containing Golgi-rapid or Golgi-Kopsch impregnated CNS neurons. In this way part of the silver chromate Golgi precipitate is reduced to metallic silver, and the remaining silver chromate is then removed with sodium thiosulfate. Of the various developers tested, Kodalith and Elon-ascorbic acid gave the best results, with excellent stabilization of the most delicate stuctures, such as the stalks of dendritic spines and finely woven axonal plexuses. Treatment with other developers (HC-110, Neutol, D-19, D-76, D-163, Kodak Universal, Rodinal, Atomal, Diafine, Eukobrom, Microdol-X) resulted in stabilization ranging from good to poor. Good stabilization of Golgi impregnation could also be achieved by first exposing the sections to sodium bromide (bromide substitution) followed by treatment with D-19, Kodalith, Elon-ascorbic acid or HC-110. After stabilization, the sections can be counterstained with aqueous cresyl violet or with alcoholic thionin without degradation of the stabilized Golgi image. The countentain permits exact determination of the position of impregnated neurons in cortical layers or subcortical nuclei.  相似文献   

19.
Deterioration of Golgi impregnation begins immediately after impregnated tissue blocks are sectioned with the Vibratome. The first signs of deterioration are fading of delicate impregnated processes, the disruption and fragmentation of dendrites, and, eventually, fading of entire neurons. These changes can be prevented by stabilization, i.e., by converting the water soluble silver chromate Golgi precipitate into metallic silver or by replacing the silver with some other dense, insoluble material. A technique is described using photographic developers to treat Vibratome sections containing Golgi-rapid or Golgi-Kopsch impregnated CNS neurons. In this way part of the silver chromate Golgi precipitate is reduced to metallic silver, and the remaining silver chromate is then removed with sodium thiosulfate. Of the various developers tested, Kodalith and Elon-ascorbic acid gave the best results, with excellent stabilization of the most delicate structures, such as the stalks of dendritic spines and finely woven axonal plexuses. Treatment with other developers (HC-110, Neutol, D-19, D-76, D-163, Kodak Universal, Rodinal, Atomal, Diafine, Eukobrom, Microdol-X) resulted in stabilization ranging from good to poor. Good stabilization of Golgi impregnation could also be achieved by first exposing the sections to sodium bromide (bromide substitution) followed by treatment with D-19, Kodalith, Elon-ascorbic acid or HC-110. After stabilization, the sections can be counterstained with aqueous cresyl violet or with alcoholic thionin without degradation of the stabilized Golgi image. The counterstain permits exact determination of the position of impregnated neurons in cortical layers or subcortical nuclei.  相似文献   

20.
A simple method for the demonstration of juxtaglomerular granules in Epon embedded semithin (0.5-1 micrometer) sections has been developed as follows: sections are prepared as for routine electron microscopy except that before dehydration, the tissues are immersed in 0.5% uranyl acetate in Veronal acetate buffer (pH 5.0) overnight at room temperature. After sectioning on an ultramicrotome, the semithin sections are briefly stained with toluidine blue-pyronin Y. After staining, the section is rinsed in running tap water and then air dried. Under a light microscope with a 40 X or a 100 X objective, the juxtaglomerular granules appear as deep purple particles and are thus easily separated from the bluish cytoplasm of the juxtaglomerular cells. Cellular organelles in other cells of the kidney were also clearly stained and their fine structure distinguishable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号