首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Propagation and amplification of extraordinary electromagnetic waves in a dipole magnetic field in a narrow 3D plasma cavity in which a weakly relativistic electron beam propagates along the magnetic field in the direction of the gradient of the magnetic field strength is investigated. The domain of wave vectors at the starting point for which the wave amplification factors at the output of the density cavity reach their maximum values is found, and the amplification factor as a function of the wave frequency is determined. It is shown that the longitudinal velocity of fast electrons, which enables generation of waves in a broader frequency range, plays an important role in the formation of the spectrum of the auroral kilometric radiation (AKR). In this case, waves with the largest amplification factors at the output of the cavity have frequencies exceeding the cutoff frequency of the background plasma at the wave generation altitude. The global inhomogeneity of the magnetic field and plasma density, which governs the residence time of the waves in the amplification region, plays a key role in the formation of the AKR spectrum. It is shown that this time is the main factor determining the energy of the waves emerging from the source.  相似文献   

2.
Formation and selection of multiarmed spiral wave due to spontaneous symmetry breaking are investigated in a regular network of Hodgkin-Huxley neuron by changing the excitability and imposing spatial forcing currents on the neurons in the network. The arm number of the multiarmed spiral wave is dependent on the distribution of spatial forcing currents and excitability diversity in the network, and the selection criterion for supporting multiarmed spiral waves is discussed. A broken spiral segment is measured by a short polygonal line connected by three adjacent points (controlled nodes), and a double-spiral wave can be developed from the spiral segment. Multiarmed spiral wave is formed when a group of double-spiral waves rotate in the same direction in the network. In the numerical studies, a group of controlled nodes are selected and spatial forcing currents are imposed on these nodes, and our results show that l-arm stable spiral wave (l = 2, 3, 4,...8) can be induced to occupy the network completely. It is also confirmed that low excitability is critical to induce multiarmed spiral waves while high excitability is important to propagate the multiarmed spiral wave outside so that distinct multiarmed spiral wave can occupy the network completely. Our results confirm that symmetry breaking of target wave in the media accounts for emergence of multiarmed spiral wave, which can be developed from a group of spiral waves with single arm under appropriate condition, thus the potential formation mechanism of multiarmed spiral wave in the media is explained.  相似文献   

3.
The propagation of MHD plasma waves in a sheared magnetic field is investigated. The problem is solved using a simplified model: a cold plasma is inhomogeneous in one direction, and the magnetic field lines are straight. The waves are assumed to travel in the plane perpendicular to the radial coordinate (i.e., the coordinate along which the plasma and magnetic field are inhomogeneous). It is shown that the character of the singularity at the resonance surface is the same as that in a homogeneous magnetic field. It is found that the shear gives rise to the transverse dispersion of Alfvén waves, i.e., the dependence of the radial component of the wave vector on the wave frequency. In the presence of shear, Alfvén waves are found to propagate across magnetic surfaces. In this case, the transparent region is bounded by two turning points, at one of which, the radial component of the wave vector approaches infinity and, at the other one, it vanishes. At the turning point for magnetosonic waves, the electric and magnetic fields are finite; however, the radial component of the wave vector approaches infinity, rather than vanishes as in the case with a homogeneous field.  相似文献   

4.
We present a computational study of reentry wave propagation using electrophysiological models of human cardiac cells and the associated magnetic field map of a human heart. We examined the details of magnetic field variation and related physiological parameters for reentry waves in two-dimensional (2-D) human atrial tissue and a three-dimensional (3-D) human ventricle model. A 3-D mesh system representing the human ventricle was reconstructed from the surface geometry of a human heart. We used existing human cardiac cell models to simulate action potential (AP) propagation in atrial tissue and 3-D ventricular geometry, and a finite element method and the Galerkin approximation to discretize the 3-D domain spatially. The reentry wave was generated using an S1-S2 protocol. The calculations of the magnetic field pattern assumed a horizontally layered conductor for reentry wave propagation in the 3-D ventricle. We also compared the AP and magnetocardiograph (MCG) magnitudes during reentry wave propagation to those during normal wave propagation. The temporal changes in the reentry wave motion and magnetic field map patterns were also analyzed using two well-known MCG parameters: the current dipole direction and strength. The current vector in a reentry wave forms a rotating spiral. We delineated the magnetic field using the changes in the vector angle during a reentry wave, demonstrating that the MCG pattern can be helpful for theoretical analysis of reentry waves.  相似文献   

5.
Kerschensteiner D  Wong RO 《Neuron》2008,58(6):851-858
Patterns of coordinated spontaneous activity have been proposed to guide circuit refinement in many parts of the developing nervous system. It is unclear, however, how such patterns, which are thought to indiscriminately synchronize nearby cells, could provide the cues necessary to segregate functionally distinct circuits within overlapping cell populations. Here, we report that glutamatergic retinal waves possess a substructure in the bursting of neighboring retinal ganglion cells with opposite light responses (ON or OFF). Within a wave, cells fire repetitive nonoverlapping bursts in a fixed order: ON before OFF. This pattern is absent from cholinergic waves, which precede glutamate-dependent activity, providing a developmental sequence of distinct activity-encoded cues. Asynchronous bursting of ON and OFF retinal ganglion cells depends on inhibition between these parallel pathways. Similar asynchronous activity patterns could arise throughout the nervous system, as inhibition matures and might help to separate connections of functionally distinct subnetworks.  相似文献   

6.
The propagation of large-amplitude solitary ion-acoustic waves in magnetized plasma is analyzed. The problem is solved without assuming plasma quasineutrality within the pulse, and the wave potential is described by Poisson’s equation. Solutions in the form of supersonic and near-sonic solitary waves propagating obliquely to the magnetic field are found. The pulses have several peaks and exist for a discrete set of the wave parameters. The amplitude and oscillation frequency of a solitary wave are determined as functions of the Mach number and the propagation angle with respect to the magnetic field.  相似文献   

7.
The properties of solitary Alfvén waves are studied for different ratios between the thermal plasma pressure and the magnetic pressure. It is shown that the wave propagation is accompanied by the generation of a nonlinear ion current along the magnetic field, the contribution of which to the Sagdeev potential was previously ignored. An expression for the quasi-potential of Alfvén waves with allowance for this effect is derived. It is found that Alfvén waves are compression waves in the inertial limit, whereas kinetic Alfvén waves are rarefaction waves. In a high-pressure plasma, a solitary wave has the form of either a well or a hump in the plasma density, depending on the relations between the Mach number, angle between the wave propagation direction and the magnetic field, and the value of the plasma beta.  相似文献   

8.
Yang JR  Huang YP  Chang FY  Hsu LC  Lin YC  Su CH  Chen PJ  Wu HS  Liu MT 《PloS one》2011,6(11):e28288
Past influenza pandemics have been characterized by the signature feature of multiple waves. However, the reasons for multiple waves in a pandemic are not understood. Successive waves in the 2009 influenza pandemic, with a sharp increase in hospitalized and fatal cases, occurred in Taiwan during the winter of 2010. In this study, we sought to discover possible contributors to the multiple waves in this influenza pandemic. We conducted a large-scale analysis of 4703 isolates in an unbiased manner to monitor the emergence, dominance and replacement of various variants. Based on the data from influenza surveillance and epidemic curves of each variant clade, we defined virologically and temporally distinct waves of the 2009 pandemic in Taiwan from May 2009 to April 2011 as waves 1 and 2, an interwave period and wave 3. Except for wave 3, each wave was dominated by one distinct variant. In wave 3, three variants emerged and co-circulated, and formed distinct phylogenetic clades, based on the hemagglutinin (HA) genes and other segments. The severity of influenza was represented as the case fatality ratio (CFR) in the hospitalized cases. The CFRs in waves 1 and 2, the interwave period and wave 3 were 6.4%, 5.1%, 15.2% and 9.8%, respectively. The results highlight the association of virus evolution and variable influenza severity. Further analysis revealed that the major affected groups were shifted in the waves to older individuals, who had higher age-specific CFRs. The successive pandemic waves create challenges for the strategic preparedness of health authorities and make the pandemic uncertain and variable. Our findings indicate that the emergence of new variants and age shift to high fatality groups might contribute potentially to the occurrence of successive severe pandemic waves and offer insights into the adjustment of national responses to mitigate influenza pandemics.  相似文献   

9.
Smooth muscle contraction is regulated by changes in cytosolic Ca2+ concentration ([Ca2+]i). In response to stimulation, Ca2+ increase in a single cell can propagate to neighbouring cells through gap junctions, as intercellular Ca2+ waves. To investigate the mechanisms underlying Ca2+ wave propagation between smooth muscle cells, we used primary cultured rat mesenteric smooth muscle cells (pSMCs). Cells were aligned with the microcontact printing technique and a single pSMC was locally stimulated by mechanical stimulation or by microejection of KCl. Mechanical stimulation evoked two distinct Ca2+ waves: (1) a fast wave (2 mm/s) that propagated to all neighbouring cells, and (2) a slow wave (20 μm/s) that was spatially limited in propagation. KCl induced only fast Ca2+ waves of the same velocity as the mechanically induced fast waves. Inhibition of gap junctions, voltage-operated calcium channels, inositol 1,4,5-trisphosphate (IP3) and ryanodine receptors, shows that the fast wave was due to gap junction mediated membrane depolarization and subsequent Ca2+ influx through voltage-operated Ca2+ channels, whereas, the slow wave was due to Ca2+ release primarily through IP3 receptors. Altogether, these results indicate that temporally and spatially distinct mechanisms allow intercellular communication between SMCs. In intact arteries this may allow fine tuning of vessel tone.  相似文献   

10.
The effect of long-wavelength magnetic field disturbances typical of the Earth’s auroral region on the generation of auroral kilometric radiation in a narrow three-dimensional plasma cavity in which a weakly relativistic electron flow propagates against the background of cold low-density plasma is analyzed. The dynamics of the propagation and amplification of fluctuation waves with initial group velocities directed toward the higher magnetic field is considered in the geometrical optics approximation. Analysis of wave trajectories shows that the wave amplification coefficients depend on the magnetic field gradient in the reflection region. If the wave reflection point lies in the region where the gradient of the disturbed magnetic field is less than that of the undisturbed dipole field, then the wave amplification coefficients exceed those of waves propagating in the undisturbed field, and vice versa. Thus, the shape of the spectrum of generated waves changes in the presence of long-wavelength disturbances of the dipole magnetic field in such a way that segments with different curvatures can form in the spectrum.  相似文献   

11.
12.
It is believed that static magnetic fields (SMF) cannot affect the pattern formation of the Belousov-Zhabotinsky (BZ) reaction, which has been frequently studied as a simplified experimental model of a nonequilibrium open system, because SMF produces no induced current and the magnetic force of SMF far below 1 T is too low to expect the effects on electrons in the BZ reaction. In the present study, we examined whether the velocity of chemical waves in the unstirred BZ reaction can be affected by a moderate-intensity SMF exposure depending on the spatial magnetic gradient. The SMF was generated by a parallel pair of attracting rectangular NdFeB magnets positioned opposite each other. The respective maximum values of magnetic flux density (B(max)), magnetic flux gradient (G(max)), and the magnetic force product of the magnetic flux density its gradient (a magnetic force parameter) were 206 mT, 37 mT/mm, and 3,000 mT(2)/mm. The ferroin-catalyzed BZ medium was exposed to the SMF for up to 16 min at 25 degrees C. The experiments demonstrated that the wave velocity was significantly accelerated primarily by the magnetic gradient. The propagation of the fastest wave front indicated a sigmoid increase along the peak magnetic gradient line, but not along the peak magnetic force product line. The underlying mechanisms of the SMF effects on the anomalous wave propagation could be attributed primarily to the increased concentration gradient of the paramagnetic iron ion complexes at the chemical wave fronts induced by the magnetic gradient.  相似文献   

13.
Ca(2+) waves are an important mechanism for encoding Ca(2+) signaling information, but the molecular basis for wave formation and how this regulates neuronal function is not entirely understood. Using nerve growth factor-differentiated PC12 cells as a model system, we investigated the interaction between the type I inositol 1,4,5-trisphosphate receptor (IP3R1) and the cytoskeletal linker, protein 4.1N, to examine the relationship between Ca(2+) wave formation and neurite development. This was examined using RNAi and overexpressed dominant negative binding regions of each protein. Confocal microscopy was used to monitor neurite formation and Ca(2+) waves. Knockdown of IP3R1 or 4.1N attenuated neurite formation, as did binding regions of IP3R1 and 4.1N, which colocalized with endogenous 4.1N and IP3R1, respectively. Upon stimulation with the IP3-producing agonist carbachol, both RNAi and dominant negative molecules shifted signaling events from waves to homogeneous patterns of Ca(2+) release. These findings provide evidence that IP3R1 localization, via protein 4.1N, is necessary for Ca(2+) wave formation, which in turn mediates neurite formation.  相似文献   

14.
We study the existence and uniqueness of traveling wave solutions of the discrete buffered bistable equation. Buffered excitable systems are used to model, among other things, the propagation of waves of increased calcium concentration, and discrete models are often used to describe the propagation of such waves across multiple cells. We derive necessary conditions for the existence of waves, and, under some restrictive technical assumptions, we derive sufficient conditions. When the wave exists it is unique and stable.   相似文献   

15.
Case LB  Waterman CM 《PloS one》2011,6(11):e26631
At the leading lamellipodium of migrating cells, protrusion of an Arp2/3-nucleated actin network is coupled to formation of integrin-based adhesions, suggesting that Arp2/3-mediated actin polymerization and integrin-dependent adhesion may be mechanistically linked. Arp2/3 also mediates actin polymerization in structures distinct from the lamellipodium, in "ventral F-actin waves" that propagate as spots and wavefronts along the ventral plasma membrane. Here we show that integrins engage the extracellular matrix downstream of ventral F-actin waves in several mammalian cell lines as well as in primary mouse embryonic fibroblasts. These "adhesive F-actin waves" require a cycle of integrin engagement and disengagement to the extracellular matrix for their formation and propagation, and exhibit morphometry and a hierarchical assembly and disassembly mechanism distinct from other integrin-containing structures. After Arp2/3-mediated actin polymerization, zyxin and VASP are co-recruited to adhesive F-actin waves, followed by paxillin and vinculin, and finally talin and integrin. Adhesive F-actin waves thus represent a previously uncharacterized integrin-based adhesion complex associated with Arp2/3-mediated actin polymerization.  相似文献   

16.
The instantaneous velocity plots of Dictyostelium discoideum amoebae responding to natural waves and simulated temporal waves of cAMP with periods of 7 min are highly similar. This similarity has been used to deduce the dynamics of a natural wave crossing an amoeba, and the behavior of amoebae has been characterized during the different phases of a natural wave with a computer-assisted dynamic image analyzing system. During the first approximately 150 sec of the front of a natural wave, cells move persistently toward the aggregation center, with high instantaneous velocity and a decreased frequency of lateral pseudopod formation. During the last 30 sec of the front of the wave and the first 30 sec of the back of the wave, there is a "freeze" in cell shape and a dramatic depression in cell motility, pseudopod formation, and intracellular particle movement. During the last 180 sec of the back of the wave, there is a rebound in pseudopod formation, but it is random in direction and leads to no net cellular translocation. The data suggest that all of the behavior of a cell but orientation during the translocation phase is mediated by the temporal dynamics of the wave. The data also suggest that orientation toward the aggregation center occurs early in the front of the wave and that, once oriented, cells move in a blind fashion during the translocation phase.  相似文献   

17.
18.
The magnetosomes of magnetotactic bacteria are prokaryotic organelles consisting of a magnetite crystal bounded by a phospholipid bilayer that contains a distinct set of proteins with various functions. Because of their unique magnetic and crystalline properties, magnetosome particles are potentially useful as magnetic nanoparticles in a number of applications, which in many cases requires the coupling of functional moieties to the magnetosome membrane. In this work, we studied the use of green fluorescent protein (GFP) as a reporter for the magnetosomal localization and expression of fusion proteins in the microaerophilic Magnetospirillum gryphiswaldense by flow cytometry, fluorescence microscopy, and biochemical analysis. Although optimum conditions for high fluorescence and magnetite synthesis were mutually exclusive, we established oxygen-limited growth conditions, which supported growth, magnetite biomineralization, and GFP fluorophore formation at reasonable rates. Under these optimized conditions, we studied the subcellular localization and expression of the GFP-tagged magnetosome proteins MamC, MamF, and MamG by fluorescence microscopy and immunoblotting. While all fusions specifically localized at the magnetosome membrane, MamC-GFP displayed the strongest expression and fluorescence. MamC-GFP-tagged magnetosomes purified from cells displayed strong fluorescence, which was sensitive to detergents but stable under a wide range of temperature and salt concentrations. In summary, our data demonstrate the use of GFP as a reporter for protein localization under magnetite-forming conditions and the utility of MamC as an anchor for magnetosome-specific display of heterologous gene fusions.  相似文献   

19.
利用微局域机械力刺激,快速实时观察机械力引起的细胞间钙波传递,系统地研究了BV-2小胶质细胞间钙通讯机制.结果表明,在细胞种植密度较小且彼此未接触的情况下,旁分泌途径可介导BV-2小胶质细胞间钙波传递.在细胞密度较大且相互接触的情况下,旁分泌和间隙连接两种途径可共同介导胞间钙波传递.更为有趣的是,在体外发现BV-2小胶质细胞间存在通道纳米管类似物连接,也可介导小胶质细胞间钙波传递.综上所述,小胶质细胞间钙波传递可通过旁分泌、间隙连接和通道纳米管类似物连接三种途径介导.  相似文献   

20.
A study is made of radio-wave scattering by Langmuir turbulent pulsations in a plasma in a magnetic field. The effect of this process on the polarization of radio waves at frequencies far above or close to the electron plasma frequency is investigated. The wave scattering by Langmuir turbulence is shown to strongly affect the polarization characteristics. When the optical thickness typical of the scattering process is on the order of unity, the degree of wave polarization can change by 30% both at high frequencies and at frequencies close to the plasma frequency, in which case the circular polarization can reverse direction. It is shown that, as a result of wave scattering by Langmuir turbulence, the degree of circular polarization of radio waves depends on the wavelength even in a uniform magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号