首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Du FK  Peng XL  Liu JQ  Lascoux M  Hu FS  Petit RJ 《The New phytologist》2011,192(4):1024-1033
A recent model has shown that, during range expansion of one species in a territory already occupied by a related species, introgression should take place preferentially from the resident species towards the invading species and genome components experiencing low rates of gene flow should introgress more readily than those experiencing high rates of gene flow. Here, we use molecular markers from two organelle genomes with contrasted rates of gene flow to test these predictions by examining genetic exchanges between two morphologically distinct spruce Picea species growing in the Qinghai-Tibetan Plateau. The haplotypes from both mitochondrial (mt) DNA and chloroplast (cp) DNA cluster into two distinct lineages that differentiate allopatric populations of the two species. By contrast, in sympatry, the species share the same haplotypes, suggesting interspecific genetic exchanges. As predicted by the neutral model, all sympatric populations of the expanding species had received their maternally inherited mtDNA from the resident species, whereas for paternally inherited cpDNA introgression is more limited and not strictly unidirectional. Our results underscore cryptic introgressions of organelle DNAs in plants and the importance of considering rates of gene flow and range shifts to predict direction and extent of interspecific genetic exchanges.  相似文献   

2.
Two major inconsistencies exist in the current neo-Darwinian evolutionary theory that random chromosomal mutations acted on by natural selection generate new species. First, natural selection does not require the evolution of ever increasing complexity, yet this is the hallmark of biology. Second, human chromosomal DNA sequence variation is predominantly either neutral or deleterious and is insufficient to provide the variation required for speciation or for predilection to common diseases. Complexity is explained by the continuous flow of energy through the biosphere that drives the accumulation of nucleic acids and information. Information then encodes complex forms. In animals, energy flow is primarily mediated by mitochondria whose maternally inherited mitochondrial DNA (mtDNA) codes for key genes for energy metabolism. In mammals, the mtDNA has a very high mutation rate, but the deleterious mutations are removed by an ovarian selection system. Hence, new mutations that subtly alter energy metabolism are continuously introduced into the species, permitting adaptation to regional differences in energy environments. Therefore, the most phenotypically significant gene variants arise in the mtDNA, are regional, and permit animals to occupy peripheral energy environments where rarer nuclear DNA (nDNA) variants can accumulate, leading to speciation. The neutralist–selectionist debate is then a consequence of mammals having two different evolutionary strategies: a fast mtDNA strategy for intra-specific radiation and a slow nDNA strategy for speciation. Furthermore, the missing genetic variation for common human diseases is primarily mtDNA variation plus regional nDNA variants, both of which have been missed by large, inter-population association studies.  相似文献   

3.
4.
Muir G  Filatov D 《Genetics》2007,177(2):1239-1247
Gene flow occurs predominantly via pollen in angiosperms, leading to stronger population subdivision for maternally inherited markers, relative to paternally or biparentally inherited genes. In contrast to this trend, population subdivision within Silene latifolia and S. dioica, as well as subdivision between the two species, is substantially lower in maternally inherited chloroplast genes compared to paternally inherited Y-linked genes. A significant frequency spectrum bias toward rare polymorphisms and a significant loss of polymorphism in chloroplast genes compared to Y-linked and autosomal genes suggest that intra- and inter-specific subdivision in the chloroplast DNA may have been eroded by a selective sweep that has crossed the S. latifolia and S. dioica species boundary.  相似文献   

5.
European mammals have been the focus of particularly detailed taxonomic studies by traditional morphological methods. However, DNA analyses have the potential to reveal additional, cryptic species. We describe two highly divergent evolutionary lineages within a small Eurasian mammal, the field vole (Microtus agrestis). We show that the two lineages can be detected not only with maternally (mitochondrial DNA), but also with paternally (Y chromosome) and biparentally (X chromosome) inherited DNA sequences. Reciprocal monophyly of all genealogies and their congruent geographical distributions is consistent with reproductive isolation. Our results suggest that the field vole should be reclassified as two separate species.  相似文献   

6.
Mitochondrial genomes are usually inherited maternally and therefore there is no direct selection against mutations that have deleterious effects in males only (mother’s curse). This is true in particular for mitochondrial mutations that reduce the fertility of their male carriers, as has been reported in a number of species. Using both analytical methods and computer simulations, we demonstrate that spatial population structure can induce strong selection against such male infertility mutations. This is because (1) infertile males may reduce the fecundity of the females they mate with and (2) population structure induces increased levels of inbreeding, so that the fitness of females carrying the mutation is more strongly reduced than the fitness of wild‐type females. Selection against mitochondrial male infertility mutations increases with decreasing deme size and migration rates, and in particular with female migration rates. On the other hand, the migration model (e.g., island or stepping stone model) has generally only minor effects on the fate of the mitochondrial mutations.  相似文献   

7.
8.
Genomic imprints-parental allele-specific DNA methylation marks at the differentially methylated regions (DMRs) of imprinted genes-are erased and reestablished in germ cells according to the individual's sex. Imprint establishment at paternally methylated germ line DMRs occurs in fetal male germ cells. In prospermatogonia, the two unmethylated alleles exhibit different rates of de novo methylation at the H19/Igf2 imprinting control region (ICR) depending on parental origin. We investigated the nature of this epigenetic memory using bisulfite sequencing and allele-specific ChIP-SNuPE assays. We found that the chromatin composition in fetal germ cells was biased at the ICR between the two alleles with the maternally inherited allele exhibiting more H3K4me3 and less H3K9me3 than the paternally inherited allele. We determined genetically that the chromatin bias, and also the delayed methylation establishment in the maternal allele, depended on functional CTCF insulator binding sites in the ICR. Our data suggest that, in primordial germ cells, maternally inherited allele-specific CTCF binding sets up allele-specific chromatin differences at the ICR. The erasure of these allele-specific chromatin marks is not complete before the process of de novo methylation imprint establishment begins. CTCF-dependent allele-specific chromatin composition imposes a maternal allele-specific delay on de novo methylation imprint establishment at the H19/Igf2 ICR in prospermatogonia.  相似文献   

9.
Hua J  Smith DR  Borza T  Lee RW 《Protist》2012,163(1):105-115
Levels of nucleotide substitution at silent sites in organelle versus nuclear DNAs have been used to estimate relative mutation rates among these compartments and explain lineage-specific features of genome evolution. Synonymous substitution divergence values in animals suggest that the rate of mutation in the mitochondrial DNA is 10-50 times higher than that of the nuclear DNA, whereas overall data for most seed plants support relative mutation rates in mitochondrial, plastid, and nuclear DNAs of 1:3:10. Little is known about relative mutation rates in green algae, as substitution rate data is limited to only the mitochondrial and nuclear genomes of the chlorophyte Chlamydomonas. Here, we measure silent-site substitution rates in the plastid DNA of Chlamydomonas and the three genetic compartments of the streptophyte green alga Mesostigma. In contrast to the situation in animals and land plants, our results support similar relative mutation rates among the three genetic compartments of both Chlamydomonas and Mesostigma. These data are discussed in relation to published intra-species genetic diversity data for the three genetic compartments of Chlamydomonas and are ultimately used to address contemporary hypotheses on the organelle genome evolution. To guide future work, we describe evolutionary divergence data of all publically available Mesostigma viride strains and identify, for the first time, three distinct lineages of Mesostigma.  相似文献   

10.
J. Dong  D. B. Wagner 《Genetics》1994,136(3):1187-1194
We have surveyed a chloroplast DNA restriction fragment length polymorphism in 745 individuals, distributed rangewide in eight allopatric natural populations of jack pine (Pinus banksiana Lamb.) and eight allopatric natural populations of lodgepole pine (Pinus contorta Dougl.). The polymorphic region of the chloroplast genome is located near duplicated psbA genes. Fourteen length variants were found in the survey, and these variants distinguished the two species qualitatively. Variant diversities were high in both species (h(es) = 0.43 in jack pine; h(es) = 0.44 in lodgepole pine). Population subdivision was weak within and among lodgepole pine subspecies and in jack pine (i.e., θvalues were less than 0.05). This weak subdivision is compatible with theoretical predictions for paternally inherited markers in wind-pollinated outcrossers, as well as for polymorphisms with high length mutation rates. If these populations are at a drift-migration equilibrium, the chloroplast DNA restriction fragment data and previous mitochondrial frequency data from the same individuals are consistent with gene flow that is differential through seeds and pollen. The new data have permitted the first empirical tests of disequilibrium between maternally and paternally inherited factors. As expected, these tests failed to detect convincing evidence of non-random association between chloroplast and mitochondrial variants.  相似文献   

11.
Microsatellites, very short tandemly repeated DNA sequences, are being extensively used in evolutionary genetics and molecular breeding of crop plants, because of their high degree of allelic variability, which is presumably caused by a high rate of mutation that changes microsatellite array length. In humans and various animals, mutation rates vary greatly and fall within the range of 10(-3) to 10(-6). In plants, the mutation rate at microsatellite loci seems to be higher than in animals, but no experimental estimates are available yet. Here, we report high spontaneous mutation rates (micro) and mutational bias at fifteen perfect (TAA)n microsatellite loci in inbred populations of chickpea. We show a significantly higher mutation rate, averaged across all loci, in the long-lived variety Ghab 2 (mu = 1.0 x 10(-2); detected in 16,050 allele-generations) compared to the variety Syrian Local (mu = 3.9 x 10(-3); detected in 15,600 allele-generations), which has a short life-span, with the majority of mutants (96.9%) in both varieties differing by < or = 1 repeat unit. Compared to animals, higher mutation rates in chickpea are likely to be due to the presence of long (TAA)n microsatellite repeat arrays and the larger number of DNA replications that meristematic initials of the plants undergo before reaching the reproductive phase. Thus, the long-lived variety undergoes more DNA replications, resulting in an accumulation of more mutations than in the variety with the shorter life-span.  相似文献   

12.
Plants offer excellent models to investigate how gene flow shapes the organization of genetic diversity. Their three genomes can have different modes of transmission and will hence experience varying levels of gene flow. We have compiled studies of genetic structure based on chloroplast DNA (cpDNA), mitochondrial DNA (mtDNA) and nuclear markers in seed plants. Based on a data set of 183 species belonging to 103 genera and 52 families, we show that the precision of estimates of genetic differentiation (G(ST)) used to infer gene flow is mostly constrained by the sampling of populations. Mode of inheritance appears to have a major effect on G(ST). Maternally inherited genomes experience considerably more subdivision (median value of 0.67) than paternally or biparentally inherited genomes (approximately 0.10). G(ST) at cpDNA and mtDNA markers covary narrowly when both genomes are maternally inherited, whereas G(ST) at paternally and biparentally inherited markers also covary positively but more loosely and G(ST) at maternally inherited markers are largely independent of values based on nuclear markers. A model-based gross estimate suggests that, at the rangewide scale, historical levels of pollen flow are generally at least an order of magnitude larger than levels of seed flow (median of the pollen-to-seed migration ratio: 17) and that pollen and seed gene flow vary independently across species. Finally, we show that measures of subdivision that take into account the degree of similarity between haplotypes (N(ST) or R(ST)) make better use of the information inherent in haplotype data than standard measures based on allele frequencies only.  相似文献   

13.
We examined the spatial distribution of maternally inherited mitochondrial DNA and paternally inherited chloroplast DNA polymorphisms in a permanently marked stand of ponderosa pine (Pinus ponderosa Laws). Movement of maternally inherited mtDNA occurs only via seed dispersal, and mtDNA haplotypes showed significant patch structure. Moreover, individuals within patches identified by mtDNA haplotypes were related approximately as half-sibs based upon analysis of allozyme genotypes. Thus, seed dispersal is limited within the population, and creates matrilineal clusters in space. By contrast, paternally inherited cpDNA is dispersed by movement of both seed and pollen. Chloroplast DNA polymorphisms showed no evidence of patch structure, but rather a weak (and nonsignificant) trend toward hyperdispersion, suggesting nearly unlimited movement of pollen among trees within this stand. Two of the trees had unique allozyme alleles, which were used to directly measure pollen movement away from those trees. Marked pollen was as likely to disperse across the population as it was to fertilize near neighbors.  相似文献   

14.
One-half of all cases of Wilms tumor (WT), a childhood kidney tumor, show loss of heterozygosity at chromosomal band 11p13 loci, suggesting that mutation of one allele and subsequent mutation or loss of the homologous allele are important events in the development of these tumors. The previously reported nonrandom loss of maternal alleles in these tumors implied that the primary mutation occurred on the paternally derived chromosome and that it was "unmasked" by loss of the normal maternal allele. This, in turn, suggests that the paternally derived allele is more mutable than the maternal one. To investigate whether germinal mutations are seen with equal frequency in maternally versus paternally inherited chromosomes, we determined the parental origin of the de novo germinal 11p13 deletions in eight children by typing lymphocyte DNA from these children and from their parents for 11p13 RFLPs. In seven of the eight cases, the de novo deletion was of paternal origin. The one case of maternal origin was unremarkable in terms of the size or extent of the 11p13 deletion, and the child did develop WT. Transmission of 11p13 deletions by both maternal and paternal carriers of balanced translocations has been reported, although maternal inheritance predominates. These data, in addition to the general preponderance of paternally derived, de novo mutations at other loci, suggest that the increased frequency of paternal deletions we observed is due to an increased germinal mutation rate in males.  相似文献   

15.
We analyzed the control region of the mitochondrial DNA (mtDNA)from maternally related individuals originating from the AzoresIslands (Portugal) in order to estimate the mutation rate ofmtDNA and to gain insights into the process by which a new mutationarises and segregates into heteroplasmy. Length and/or pointheteroplasmies were found at least in one individual of 72%of the studied families. Eleven new point substitutions werefound, all of them in heteroplasmy, from which five appear tobe somatic mutations and six can be considered germinal, evidencingthe high frequency of somatic mutations in mtDNA in healthyyoung individuals. Different values of the mutation rate accordingto different assumptions were estimated. When considering allthe germinal mutations, the value of the mutation rate obtainedis one of the highest reported so far in family studies. However,when corrected for gender (assuming that the mutations presentin men have the same evolutionary weight of somatic mutationsbecause they will inevitably be lost) and for the probabilityof intraindividual fixation, the value for the mutation rateobtained for HVRI and HVRII (0.2415 mutations/site/Myr) wasin the upper end of the values provided by phylogenetic estimations.These results indicate that the discrepancy, that has been reportedpreviously, between the human mtDNA mutation rates observedalong evolutionary timescales and the estimations obtained usingfamily pedigrees can be minimized when corrections for genderproportions in newborn individuals and for the probability ofintraindividual fixation are introduced. The analyses performedsupport the hypothesis that (1) in a constant, tight bottleneckgenetic drift alone can explain different patterns of heteroplasmysegregation and (2) in neutral conditions, the destiny of anew mutation is strictly related to the initial proportion ofthe new variant. Another important point arising from the dataobtained is that, even in the absence of a paternal contributionof mtDNA, recombination may occur between mtDNA molecules presentin an individual, which is only observable if it occurs betweenmtDNA types that differ at two or more positions.  相似文献   

16.
Cytoplasmic male sterility, conditioned by some maternally inherited plant mitochondrial genomes, is the most expedient method to produce uniform populations of pollen-sterile plants on a commercial scale. Plant mitochondrial genomes are not currently amenable to genetic transformation, but genetic manipulation of the plastid genome allows engineering of maternally inherited traits in some species. A recent study has shown that the Acinetobacter beta-ketothiolase gene, expressed in the Nicotiana tabacum plastid, conditions maternally inherited male sterility, laying the groundwork for new approaches to control pollen fertility in crop plants.  相似文献   

17.
Zhang S  Wang L  Hao Y  Wang P  Hao P  Yin K  Wang QK  Liu M 《Mitochondrion》2008,8(3):205-210
Leber's hereditary optic neuropathy (LHON) is a maternally inherited ocular disease which has been associated with three primary mitochondrial DNA mutations: G3640A, G11778A, and T14484C. In this study, we clinically characterized a Chinese family with complete penetrance of LHON. The patients in the family presented with variable clinical features. By direct DNA sequence analysis, we identified both T14484C mutation and a nearby T to C variant at nucleotide 14502 of mitochondria DNA. The T14502C variant altered I58 to V of the protein ND6, which was present in all patients of the family, but not in four unaffected family members and 200 normal controls. The co-existence of both T14484C mutation and T14502C substitution in all patients from the same LHON family suggests that T14502C may play a synergistic role with the primary mutation T14484C. The two variants together may account for the complete penetrance and absence of marked gender bias and visual recovery in the Chinese LHON family although we cannot exclude the possibility of simultaneous involvement of additional mitochondrial variant(s).  相似文献   

18.
Genetic, ethnographic, and historical evidence suggests that the Hindu castes have been highly endogamous for several thousand years and that, when movement between castes does occur, it typically consists of females joining castes of higher social status. However, little is known about migration rates in these populations or the extent to which migration occurs between caste groups of low, middle, and high social status. To investigate these aspects of migration, we analyzed the largest collection of genetic markers collected to date in Hindu caste populations. These data included 45 newly typed autosomal short tandem repeat polymorphisms (STRPs), 411 bp of mitochondrial DNA sequence, and 43 Y-chromosomal single-nucleotide polymorphisms that were assayed in more than 200 individuals of known caste status sampled in Andrah Pradesh, in South India. Application of recently developed likelihood-based analyses to this dataset enabled us to obtain genetically derived estimates of intercaste migration rates. STRPs indicated migration rates of 1–2% per generation between high-, middle-, and low-status caste groups. We also found support for the hypothesis that rates of gene flow differ between maternally and paternally inherited genes. Migration rates were substantially higher in maternally than in paternally inherited markers. In addition, while prevailing patterns of migration involved movement between castes of similar rank, paternally inherited markers in the low-status castes were most likely to move into high-status castes. Our findings support earlier evidence that the caste system has been a significant, long-term source of population structuring in South Indian Hindu populations, and that patterns of migration differ between males and females.  相似文献   

19.
Most evolutionary theory focuses on species that reproduce through sexual reproduction where both sexes have a diploid chromosome count. Yet a substantial proportion of multicellular species display complex life cycles, with both haploid and diploid life stages. A classic example is haplodiploidy, where females develop from fertilized eggs and are diploid, while males develop from unfertilized eggs and are haploid. Although haplodiploids make up about 15% of all animals (de la Filia et al. 2015 ), this type of reproduction is rarely considered in evolutionary theory. In this issue of Molecular Ecology, Patten et al. ( 2015 ) develop a theoretical model to compare the rate of nuclear and mitochondrial introgression in haplodiploid and diploid species. They show that when two haplodiploid species hybridize, nuclear genes are much less likely to cross the species barrier than if both species were to be diploids. The reason for this is that only half of the offspring resulting from matings between haplodiploid species are true hybrids: sons from such mating only inherit their mother genes and therefore only contain genes of the maternal species. Truly, hybrid males can only occur through backcrossing of a hybrid female to a male of one of the parental species. While this twist of haplodiploid transmission genetics limits nuclear introgression, mitochondrial genes, which are maternally inherited, are unaffected by the scarcity of hybrid males. In other words, the rate of mitochondrial introgression is the same for haplodiploid and diploid species. As a result, haplodiploid species on average show a bias of mitochondrial compared to nuclear introgression.  相似文献   

20.
Multiple Origins of a Mitochondrial Mutation Conferring Deafness   总被引:2,自引:0,他引:2       下载免费PDF全文
A point mutation (1555G) in the smaller ribosomal subunit of the mitochondrial DNA (mtDNA) has been associated with maternally inherited traits of hypersensitivity to streptomycin and sensorineural deafness in a number of families from China, Japan, Israel, and Africa. To determine whether this distribution was the result of a single or multiple mutational events, we carried out genetic distance analysis and phylogenetic analysis of 10 independent mtDNA D-loop sequences from Africa and Asia. The mtDNA sequence diversity was high (2.21%). Phylogenetic analysis assigned 1555G-bearing haplotypes at very divergent points in the human mtDNA evolutionary tree, and the 1555G mutations occur in many cases on race-specific mtDNA haplotypes, both facts are inconsistent with a recent introgression of the mutation into these races. The simplest interpretation of the available data is that there have been multiple origins of the 1555G mutation. The genetic distance among mtDNAs bearing the pathogenic 1555G mutation is much larger than among mtDNAs bearing either evolutionarily neutral or weakly deleterious nucleotide substitutions (such as the 4336G mutation). These results are consistent with the view that pathogenic mtDNA haplotypes such as 1555G arise on disparate mtDNA lineages which because of negative natural selection leave relatively few related descendants. The co-existence of the same mutation with deafness in individuals with very different nuclear and mitochondrial genetic backgrounds confirms the pathogenicity of the 1555G mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号