首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transforming growth factor-beta (TGF-beta) signaling is critical in a variety of biological processes such as cell proliferation, differentiation, and apoptosis. TGF-beta signaling is mediated by a group of proteins including TGF-beta receptors and Smads. It is known that different cells can exhibit different sensitivities to TGF-beta. Several molecular mechanisms, such as the differential expression of the receptor levels, have been suggested as contributing to these differences. Here, we report evidence for a novel mechanism of regulating TGF-beta sensitivity that depends on the role of CHIP (carboxyl terminus of Hsc70-interacting protein) in regulating the basal level of Smad3 via the ubiquitin-dependent degradation pathway. First, using a luciferase assay we found that overexpression of CHIP inhibited TGF-beta signaling, whereas silencing CHIP expression by small interfering RNAs led to increased TGF-beta signaling sensitivity. Second, based on the results of cell proliferation assays and JunB expression, we found that TGF-beta signaling could be abolished by stably overexpressing CHIP. Third, in those cell lines with stably expressed CHIP, we observed that the Smad3 protein level was dramatically decreased. Finally, we demonstrated that CHIP served as a U-box dependent E3 ligase that can directly mediate ubiquitination and degradation of Smad3 and that this action of CHIP was independent of TGF-beta signaling. Taken together, these findings suggest that CHIP can modulate the sensitivity of the TGF-beta signaling by controlling the basal level of Smad3 through ubiquitin-mediated degradation.  相似文献   

2.
We recently reported that transforming growth factor (TGF)-beta induced the neural crest stem cell line Monc-1 to differentiate into a spindle-like contractile smooth muscle cell (SMC) phenotype and that Smad signaling played an important role in this phenomenon. In addition to Smad signaling, other pathways such as mitogen-activated protein kinase (MAPK), phosphoinositol-3 kinase, and RhoA have also been shown to mediate TGF-beta actions. The objectives of this study were to examine whether these signaling pathways contribute to TGF-beta-induced SMC development and to test whether Smad signaling cross-talks with other pathway(s) during SMC differentiation induced by TGF-beta. We demonstrate here that RhoA signaling is critical to TGF-beta-induced SMC differentiation. RhoA kinase (ROCK) inhibitor Y27632 significantly blocks the expression of multiple SMC markers such as smooth muscle alpha-actin, SM22alpha, and calponin in TGF-beta-treated Monc-1 cells. In addition, Y27632 reversed the cell morphology and abolished the contractility of TGF-beta-treated cells. RhoA signaling was activated as early as 5 min following TGF-beta addition. Dominant negative RhoA blocked nuclear translocation of Smad2 and Smad3 because of the inhibition of phosphorylation of both Smads and inhibited Smad-dependent SBE promoter activity, whereas constitutively active RhoA significantly enhanced SBE promoter activity. Consistent with these results, C3 exotoxin, an inhibitor of RhoA activation, significantly attenuated SBE promoter activity and inhibited Smad nuclear translocation. Taken together, these data point to a new role for RhoA as a modulator of Smad activation while regulating TGF-beta-induced SMC differentiation.  相似文献   

3.
Transforming growth factor beta (TGF-beta) modulates a number of cellular phenotypes as divergent as growth stimulation and growth inhibition. Although the Smad pathway is critical for many of these responses, recent evidence indicates that Smad-independent pathways may also have a critical role. One such protein previously shown to regulate TGF-beta action independent of the Smad proteins is the c-Abl nonreceptor tyrosine kinase. In the current study we determined that TGF-beta receptor signaling activates c-Abl kinase activity in a subset of fibroblast but not epithelial cultures. This cell type-specific response occurs in a membrane-proximal locale independent of receptor internalization and upstream of dynamin action. Although c-Abl activation by TGF-beta is independent of Smad2 or Smad3, it is prevented by inhibitors of phosphatidylinositol 3-kinase or PAK2. Thus, c-Abl represents a target downstream of phosphatidylinositol 3-kinase-activated PAK2, which differentiates TGF-beta signaling in fibroblasts and epithelial cell lines and integrates serine/threonine receptor kinases with tyrosine kinase pathways.  相似文献   

4.
5.
6.
7.
Transforming growth factor-beta (TGF-beta) is a potent inhibitor of pancreatic acinar cell growth. Smad4 is a central mediator in the TGF-beta signaling pathway. To study the effect of Smad4 on pancreatic growth, cell cycle protein expression, and the expression of a TGF-beta-responsive promoter in vitro, we constructed an adenovirus containing dominant-negative COOH terminal truncated Smad4 (AddnSmad4) downstream of the rat elastase promoter. Acinar cells expressed dominant-negative Smad4 within 8 h after infection, and expression persisted for 72 h. Mouse pancreatic acini were infected with either AddnSmad4 or control adenovirus expressing green fluorescent protein, and TGF-beta was added 8 h after infection. Acinar cells were then incubated for 1, 2, or 3 days, and [(3)H]thymidine incorporation was determined. AddnSmad4 significantly reduced TGF-beta inhibition of [(3)H]thymidine incorporation, with maximal effects on day 3. AddnSmad4 also completely blocked TGF-beta-mediated growth inhibition in the presence of basic fibroblast growth factor. We next examined the effects of AddnSmad4 on TGF-beta-induced expression of the cell cycle regulatory proteins p21(Cip1) and p27(Kip1). TGF-beta induced upregulation of p21(Cip1), which was completely blocked by AddnSmad4. AddnSmad4 also inhibited TGF-beta-induced expression of the TGF-beta-responsive luciferase reporter 3TP-Lux. These results show that Smad4 is essential in TGF-beta-mediated signaling in pancreatic acinar cells.  相似文献   

8.
9.
10.
11.
12.
Atrophin-1-interacting protein 4 (AIP4) is the human homolog of the mouse Itch protein (hItch), an E3 ligase for Notch and JunB. Human enhancer of filamentation 1 (HEF1) has been implicated in signaling pathways such as those mediated by integrin, T cell receptor, and B cell receptor and functions as a multidomain docking protein. Recent studies suggest that HEF1 is also involved in the transforming growth factor-beta (TGF-beta) signaling pathways, by interacting with Smad3, a key signal transducer downstream of the TGF-beta type I receptor. The interaction of Smad3 with HEF1 induces HEF1 proteasomal degradation, which was further enhanced by TGF-beta stimulation. The detailed molecular mechanisms of HEF1 degradation regulated by Smad3 were poorly understood. Here we report our studies that demonstrate the function of AIP4 as an ubiquitin E3 ligase for HEF1. AIP4 forms a complex with both Smad3 and HEF1 through its WW domains in a TGF-beta-independent manner and regulates HEF1 ubiquitination and degradation, which can be enhanced by TGF-beta stimulation. These findings reveal a new mechanism for Smad3-regulated proteasomal degradation events and also broaden the network of cross-talk between the TGF-beta signaling pathway and those involving HEF1 and AIP4.  相似文献   

13.
It is now clear that resident myofibroblasts play a central role in the mediation of tissue fibrosis. The aim of the work outlined in this study is to increase our understanding of the mechanisms which drive the phenotypic and functional changes associated with the differentiation process. We have used an in vitro model of transforming growth factor-beta1 (TGF-beta1)-induced pulmonary fibroblast-myofibroblast differentiation to examine the role of the TGF-beta1 Smad protein signaling intermediates, in alterations of fibroblast phenotype and function associated with terminal differentiation. TGF-beta1 induced marked alteration in cell phenotype, such that cells resembled "epithelioid-postmitotic fibroblasts." This was associated with marked reorganization of the actin cytoskeleton and upregulation of alphaSMA gene expression. TGF-beta1 stimulation also induced alphaSMA protein expression with increased incorporation of alphaSMA into stress fibers. Following stimulation with TGF-beta1, subsequent addition of serum-free medium did not reverse TGF-beta1-induced morphological change, suggesting that TGF-beta1 induced a relatively stable alteration in fibroblast cell phenotype. Functionally, these phenotypic changes were associated with induction of type I, type III, and type IV collagen gene expression and an increase in the concentrations of the respective collagens in the cell culture supernatant. The role of Smad proteins in terminal differentiation of fibroblasts was examined by transfection of cells, with expression vectors for the TGFbeta1 receptor-regulated Smads (R-Smads) or the co-Smad, Smad 4. Transfection with Smad2 but not Smad3 resulted in TGF-beta1 independent alteration in fibroblast cell phenotype, up-regulation of alphaSMA mRNA and reorganization of the actin cytoskeleton. Transfection with Smad4 also induced alteration in cell phenotype, although this was not as pronounced as the effect of overexpression of Smad2. Overexpression of the Smad2, Smad3, or Smad4 proteins was associated with increased production of all collagen types. The study suggests that the phenotypic and functional changes associated with TGF-beta1-induced fibroblast terminal differentiation are differentially regulated by Smad proteins.  相似文献   

14.
15.
There are diverse investigations focused on the therapies of lymphoma. Our research was taken to identify the effects of lentiviral-mediated Smad4 gene silencing on chemosensitivity of human lymphoma cells to adriamycin (ADM) via transforming growth factor β (TGFβ) signaling pathway. Raji/ADM cells were cultured and infected with lentiviral particles Smad4-short hairpin (shRNA) and control-shRNA. Then, the messenger RNA (mRNA) and protein levels of TGFβ signaling pathway–related factors (Smad4, Smad3, cyclinE, cyclinD1, and p21) in Raji/ADM cells were determined. The effect of Smad4-shRNA on cell viability, invasion and migration, and apoptosis were also detected. Compared with the Raji group, increased mRNA and protein levels of Smad4, Smad3, cyclinE, cyclinD1, enhanced cell proliferation, migration and invasion as well as decreased mRNA, and protein levels of p21 and cell apoptosis rate were found in the Raji/ADM and control-shRNA groups. However, Smad4 gene silencing resulted in decreased mRNA and protein levels of Smad4, Smad3, cyclinE, and cyclinD1 along with inhibited cell proliferation, migration and invasion but increased expression of p21 together with cell apoptosis. Collectively, Smad4 gene silencing can inhibit the activation of TGFβ signaling pathway, thereby enhancing the chemosensitivity of human lymphoma cells to ADM.  相似文献   

16.
Fibrosis is a pathological situation in which excessive amounts of extracellular matrix (ECM) are deposited in the tissue. Myofibroblasts play a crucial role in the development and progress of fibrosis as they actively synthesize ECM components such as collagen I, fibronectin and connective tissue growth factor (CTGF) and cause organ fibrosis. Transforming growth factor beta 1 (TGF-β1) plays a major role in tissue fibrosis. Activin receptor-like kinase 1 (ALK1) is a type I receptor of TGF-β1 with an important role in angiogenesis whose function in cellular biology and TGF-β signaling is well known in endothelial cells, but its role in fibroblast biology and its contribution to fibrosis is poorly studied. We have recently demonstrated that ALK1 regulates ECM protein expression in a mouse model of obstructive nephropathy. Our aim was to evaluate the role of ALK1 in several processes involved in fibrosis such as ECM protein expression, proliferation and migration in ALK1+/+ and ALK1+/− mouse embryonic fibroblasts (MEFs) after TGF-β1 stimulations and inhibitors. ALK1 heterozygous MEFs show increased expression of ECM proteins (collagen I, fibronectin and CTGF/CCN2), cell proliferation and migration due to an alteration of TGF-β/Smad signaling. ALK1 heterozygous disruption shows an increase of Smad2 and Smad3 phosphorylation that explains the increases in CTGF/CCN2, fibronectin and collagen I, proliferation and cell motility observed in these cells. Therefore, we suggest that ALK1 plays an important role in the regulation of ECM protein expression, proliferation and migration.  相似文献   

17.
18.
Transforming growth factor-beta1 is essential to maintain T cell homeostasis, as illustrated by multiorgan inflammation in mice deficient in TGF-beta1 signaling. Despite the physiological importance, the mechanisms that TGF-beta1 uses to regulate T cell expansion remain poorly understood. TGF-beta1 signals through transmembrane receptor serine/threonine kinases to activate multiple intracellular effector molecules, including the cytosolic signaling transducers of the Smad protein family. We used Smad3(-/-) mice to investigate a role for Smad3 in IL-2 production and proliferation in T cells. Targeted disruption of Smad3 abrogated TGF-beta1-mediated inhibition of anti-CD3 plus anti-CD28-induced steady state IL-2 mRNA and IL-2 protein production. CFSE labeling demonstrated that TGF-beta1 inhibited entry of wild-type anti-CD3 plus anti-CD28-stimulated cells into cycle cell, and this inhibition was greatly attenuated in Smad3(-/-) T cells. In contrast, disruption of Smad3 did not affect TGF-beta1-mediated inhibition of IL-2-induced proliferation. These results demonstrate that TGF-beta1 signals through Smad3-dependent and -independent pathways to inhibit T cell proliferation. The inability of TGF-beta1 to inhibit TCR-induced proliferation of Smad3(-/-) T cells suggests that IL-2 is not the primary stimulus driving expansion of anti-CD3 plus anti-CD28-stimulated T cells. Thus, we establish that TGF-beta1 signals through multiple pathways to suppress T cell proliferation.  相似文献   

19.
20.
Bone morphogenetic proteins (BMPs) play a crucial role in programmed cell death (PCD), a biological process required for the sculpturing of the embryonic limbs. However, it is unknown if BMP signaling directly promotes cell death, or if it induces a molecular cascade that culminates in cell death. Given that Smad8, which encodes one component of BMP signaling, is expressed during the regression of interdigital tissue and responds to BMPs, we presumed that it may be expressed in other cell death areas during chick limb development such as the anterior and posterior necrotic zones (ANZ and PNZ). The present study found that the Smad8 expression pattern in the anterior mesoderm of the hindlimb is very similar to that observed in limbs stained to detect cell death. Also, BMPs and retinoic acid, which act as apoptosis-promoting factors, induced expression of Smad8 before the onset of cell death, while sonic hedgehog protein, acting as a survival factor, inhibited Smad8 expression in the ANZ. However, although there was correlation between Smad8 expression patterns and PCD in the ANZ, phosphorylated forms of SMAD1/5/8 and TUNEL staining did not co-localize in dying cells. Interestingly, a short pulse of BMP was sufficient to trigger cell death. On the other hand, most dying cells were located in the avascular region, while many cells expressing Smad8 were located in the vascular region of the ANZ. These results suggest that BMPs mediated by SMAD signaling activate a molecular cascade that culminates in PCD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号