首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We have determined the structural organization and functional roles of centromere-specific DNA sequence repeats in cen1, the centromere region from chromosome I of the fission yeast Schizosaccharomyces pombe. cen1 is composed of various classes of repeated sequences designated K', K"(dgl), L, and B', arranged in a 34-kb inverted repeat surrounding a 4- to 5-kb nonhomologous central core. Artificial chromosomes containing various portions of the cen1 region were constructed and assayed for mitotic and meiotic centromere function in S. pombe. Deleting K' and L from the distal portion of one arm of the inverted repeat had no effect on mitotic centromere function but resulted in greatly increased precocious sister chromatid separation in the first meiotic division. A centromere completely lacking K' and L, but containing the central core, one copy of B' and K" in one arm, and approximately 2.5 kb of the core-proximal portion of B' in the other arm, was also fully functional mitotically but again did not maintain sister chromatid attachment in meiosis I. However, deletion of K" from this minichromosome resulted in complete loss of centromere function. Thus, one copy of at least a portion of the K" (dgl) repeat is absolutely required but is not sufficient for S. pombe centromere function. The long centromeric inverted-repeat region must be relatively intact to maintain sister chromatid attachment in meiosis I.  相似文献   

2.
Centromere structure and function in budding and fission yeasts   总被引:16,自引:0,他引:16  
  相似文献   

3.
By cloning centromere-linked genes followed by partial overlapping hybridization, we constructed a 210-kb map encompassing the centromere in chromosome II and a 60-kp map near the centromere of chromosome I in the fission yeast Schizosaccharomyces pombe which has three chromosomes. Integration of the cloned sequences into the chromosome and subsequent analyses of tetrads and dyads revealed an approximately 50 kb long domain located in the middle of the 210-kb map, tightly linked to the centromere and greatly reduced in meiotic recombination. This domain contained at least two classes of repetitive sequences. One, designated yn1, was specifically present in a particular chromosome and repeated three times in the 210-kb map of chromosome II. The other, designated dg, was located in all the centromere regions of three chromosomes. One (dgI) and two (dgIIa, dgIIb) copies of the dg were found in the maps of chromosomes I and II, respectively. The dgIIa and dgIIb were arranged with a 20-kb interval within the repetitive domain. In the centric region of chromosome II, 3-4 copies of the dg appeared to exist. By determining the nucleotide sequences of dgI and dgIIa, the dg was identified to be 3.8 kb long. The sequence homology was 99% between dgI and dgIIa. These extraordinarily homologous sequences seemed not to be transcribed into RNA nor to be encoding any protein. The larger part of the dg sequence was internally non-repetitious, a 600-bp region existed which consisted of stretches of several short repeating units. The structures in or surrounding the centromeres of S. pombe appear to be much more complex than those of the budding yeast Saccharomyces cerevisiae.  相似文献   

4.
The DNA requirements for centromere function in fission yeast have been investigated using a minichromosome assay system. Critical elements of Schizosaccharomyces pombe centromeric DNA are portions of the centromeric central core and sequences within a 2.1-kilobase segment found on all three chromosomes as part of the K-type (K/K"/dg) centromeric repeat. The S. pombe centromeric central core contains DNA sequences that appear functionally redundant, and the inverted repeat motif that flanks the central core in all native fission yeast centromeres is not essential for centromere function in circular minichromosomes. Tandem copies of centromeric repeat K", in conjunction with the central core, exert an additive effect on centromere function, increasing minichromosome mitotic stability with each additional copy. Centromeric repeats B and L, however, and parts of the central core and its core-associated repeat are dispensable and cannot substitute for K-type sequences. Several specific protein binding sites have been identified within the centromeric K-type repeat, consistent with a recently proposed model for centromere/kinetochore function in S. pombe.  相似文献   

5.
A circular minichromosome carrying functional centromere sequences (cen2) from Schizosaccharomyces pombe chromosome II behaves as a stable, independent genetic linkage group in S. pombe. The cen2 region was found to be organized into four large tandemly repeated sequence units which span over 80 kilobase pairs (kb) of untranscribed DNA. Two of these units occurred in a 31-kb inverted repeat that flanked a 7-kb central core of nonhomology. The inverted repeat region had centromere function, but neither the central core alone nor one arm of the inverted repeat was functional. Deletion of a portion of the repeated sequences that flank the central core had no effect on mitotic segregation functions or on meiotic segregation of a minichromosome to two of the four haploid progeny, but drastically impaired centromere-mediated maintenance of sister chromatid attachment in meiosis I. This requirement for centromere-specific repeated sequences could not be satisfied by introduction of random DNA sequences. These observations suggest a function for the heterochromatic repeated DNA sequences found in the centromere regions of higher eucaryotes.  相似文献   

6.
7.
Two functionally important DNA sequence elements in centromeres of the fission yeast Schizosaccharomyces pombe are the centromeric central core and the K-type repeat. Both of these DNA elements show internal functional redundancy that is not correlated with a conserved DNA sequence. Specific, but degenerate, sequences in these elements are bound in vitro by the S. pombe DNA-binding proteins Abp1p (also called Cbp1p) and Cbhp, which are related to the mammalian centromere DNA-binding protein CENP-B. In this study, we determined that Abp1p binds to at least one of its target sequences within S. pombe centromere II central core (cc2) DNA with an affinity (K(s) = 7 x 10(9) M(-1)) higher than those of other known centromere DNA-binding proteins for their cognate targets. In vivo, epitope-tagged Cbhp associated with centromeric K repeat chromatin, as well as with noncentromeric regions. Like abp1(+)/cbp1(+), we found that cbh(+) is not essential in fission yeast, but a strain carrying deletions of both genes (Deltaabp1 Deltacbh) is extremely compromised in growth rate and morphology and missegregates chromosomes at very high frequency. The synergism between the two null mutations suggests that these proteins perform redundant functions in S. pombe chromosome segregation. In vitro assays with cell extracts with these proteins depleted allowed the specific assignments of several binding sites for them within cc2 and the K-type repeat. Redundancy observed at the centromere DNA level appears to be reflected at the protein level, as no single member of the CENP-B-related protein family is essential for proper chromosome segregation in fission yeast. The relevance of these findings to mammalian centromeres is discussed.  相似文献   

8.
Replication of centromere II of Schizosaccharomyces pombe.   总被引:2,自引:1,他引:1       下载免费PDF全文
The centromeric DNAs of Schizosaccharomyces pombe chromosomes resemble those of higher eukaryotes in being large and composed predominantly of repeated sequences. To begin a detailed analysis of the mode of replication of a complex centromere, we examined whether any sequences within S. pombe centromere II (cen2) have the ability to mediate autonomous replication. We found a high density of segments with such activity, including at least eight different regions comprising most of the repeated and unique centromeric DNA elements. A physical mapping analysis using two-dimensional gels showed that autonomous replication initiated within the S. pombe sequences in each plasmid. A two-dimensional gel analysis of replication on the chromosomes revealed that the K and L repeat elements, which occur in multiple copies at all three centromeres and comprise approximately 70% of total centromeric DNA mass in S. pombe, are both sites of replication initiation. In contrast, the unique cen2 central core, which contains multiple segments that can support autonomous replication, appears to be repressed for initiation on the chromosome. We discuss the implications of these findings for our understanding of DNA replication and centromere function.  相似文献   

9.
Gross variations in the structure of the centromere of Schizosaccharomyces pombe chromosome III (cen3) were apparent following characterization of this centromeric DNA in strain Sp223 and comparison of the structure with that of cen3 in three other commonly used laboratory strains. Further differences in centromere structure were revealed when the structure of the centromere of S. pombe chromosome II (cen2) was compared among common laboratory strains and when the structures of cen2 and cen3 from our laboratory strains were compared with those reported from other laboratories. Differences observed in cen3 structure include variations in the arrangement of the centromeric K repeats and an inverted orientation of the conserved centromeric central core. In addition, we have identified two laboratory strains that contain a minimal cen2 repeat structure that lacks the tandem copies of the cen2-specific block of K-L-B-J repeats characteristic of Sp223 cen2. We have also determined that certain centromeric DNA structural motifs are relatively conserved among the four laboratory strains and eight additional wild-type S. pombe strains isolated from various food and beverage sources. We conclude that in S. pombe, as in higher eukaryotes, the centromere of a particular chromosome is not a defined genetic locus but can contain significant variability. However, the basic DNA structural motif of a central core immediately flanked by inverted repeats is a common parameter of the S. pombe centromere.  相似文献   

10.
The feasibility of using the fission yeast, Schizosaccharomyces pombe , as a host for the propagation of cloned large fragments of human DNA has been investigated. Two acentric vector arms were utilized; these carry autonomously replicating sequences ( ars elements), selectable markers ( ura4(+) or LEU2 ) and 250 bp of S. pombe terminal telomeric repeats. All cloning was performed between the unique sites in both vector arms for the restriction endonuclease Not I. Initially the system was tested by converting six previously characterized cosmids from human chromosome 11p13 into a form that could be propagated in S.pombe as linear episomal elements of 50-60 kb in length. In all transformants analysed these cosmids were maintained intact. To test if larger fragments of human DNA could also be propagated total human DNA was digested with Not I and size fractionated by pulsed field gel electrophoresis (PFGE). Fractions of 100-1000 kb were ligated to Not I-digested vector arms and transformed into S.pombe protoplasts in the presence of lipofectin. Prototrophic ura+leu+transformants were obtained which upon examination by PFGE were found to contain additional linear chromosomes migrating at between 100 and 500 kb with a copy number of 5-10 copies/cell. Hybridization analyses revealed that these additional bands contained human DNA. Fluorescent in situ hybridization (FISH) analyses of several independent clones indicated that the inserts were derived from single loci within the human genome. These analyses clearly demonstrate that it is possible to clone large fragments of heterologous DNA in fission yeast using this S.p ombe artificial chromosome system which we have called SPARC. This vector-host system will complement the various other systems for cloning large DNA fragments.  相似文献   

11.
12.
Nonomura K  Kurata N 《Chromosoma》2001,110(4):284-291
The large-scale primary structure of the centromeric region of rice chromosome 5 was analyzed, the first example in a cereal species. The yeast artificial chromosome (YAC) and bacterial artificial chromosome (BAC) contigs aligned on the centromere of rice chromosome 5 (CEN5) covered a distance of more than 670 kb. Strong suppression of genetic recombination, one of the features of a functional centromere, occurred along the contig region. The most remarkable feature of CEN5 is the composition of the multiple repetitive elements. Oryza-specific RCS2 short tandem repeats were clustered along less than 100 kb at one end of the contig. At least 15 copies of the conserved domain of the 1.9 kb RCE1 centromeric repeats, which are similar to the long terminal repeats (LTRs) of gypsy-type retrotransposon RIRE7, were dispersed mainly in 320 kb stretches next to RCS2 tandem clusters. Many copies of the LTR-like sequences of RIRE3 and RIRE8, another gypsy-type retrotransposon, were also found throughout the contig. On the other hand, the gagpol region was less conserved in the contig. These results indicate that the rice centromere is composed of multiple repetitive sequences with the RCS2 tandem cluster probably being situated as the core of a functional centromere of some hundreds of kilobases to megabases in length.  相似文献   

13.
Telomeres, which are important for chromosome maintenance, are composed of long, repetitive DNA sequences associated with a variety of telomere-binding proteins. We characterized the organization and structure of rice telomeres and adjacent subtelomere regions on the basis of cytogenetic and sequence analyses. The length of the rice telomeres ranged from 5.1 to 10.8 kb, as revealed by both fibre-fluorescent in situ hybridization and terminal restriction-fragment assay. Physical maps of the chromosomal ends were constructed from a fosmid library. This facilitated sequencing of the telomere regions of chromosomes 1S, 2S, 2L, 6L, 7S, 7L and 8S. The resulting sequences contained conserved TTTAGGG telomere repeats, which indicates that the physical maps partly covered the telomere regions of the respective chromosome arms. These repeats were organized in the order of 5'-TTTAGGG-3' from the chromosome-specific region, except in chromosome 7S, in which seven inverted copies also existed in tandem array. Analysis of the telomere-flanking regions revealed the occurrence of deletions, insertions, or chromosome-specific substitutions of single nucleotides within the repeat sequences at the junction between the telomere and subtelomere. The sequences of the 500-kb regions of the seven chromosome ends were analysed in detail. A total of 598 genes were predicted in the telomeric regions. In addition, repetitive sequences derived from various kinds of retrotransposon were identified. No significant evidence for segmental duplication could be detected within or among the subtelomere regions. These results indicate that the rice chromosome ends are heterogeneous in both sequence and characterization.  相似文献   

14.
15.
Centromeres of budding and fission yeasts   总被引:39,自引:0,他引:39  
Centromeres of the budding yeast Saccharomyces cerevisiae are structurally relatively simple, are specified by only about 125 base pairs of DNA, and contain no repeated DNA sequences. The centromere regions in the fission yeast Schizosaccharomyces pombe span many kilobase pairs of DNA and contain repeated DNA sequences that appear to be necessary for full centromere function. A portion of the repeated sequences is organized into a large inverted repeated structure in the centromere region of each S. pombe chromosome. Fission yeast provides an excellent model system for studying the role of repeated DNA sequences in centromere function.  相似文献   

16.
Autonomously replicating sequences (ARSs) in the yeast Yarrowia lipolytica require two components: an origin of replication (ORI) and centromere (CEN) DNA, both of which are necessary for extrachromosomal maintenance. To investigate this cooperation in more detail, we performed a screen for genomic sequences able to confer high frequency of transformation to a plasmid-borne ORI. Our results confirm a cooperation between ORI and CEN sequences to form an ARS, since all sequences identified in this screen displayed features of centromeric DNA and included the previously characterized CEN1-1, CEN3-1 and CEN5-1 fragments. Two new centromeric DNAs were identified as they are unique, map to different chromosomes (II and IV) and induce chromosome breakage after genomic integration. A third sequence, which is adjacent to, but distinct from the previously characterized CEN1-1 region was isolated from chromosome I. Although these CEN sequences do not share significant sequence similarities, they display a complex pattern of short repeats, including conserved blocks of 9 to 14 bp and regions of dyad symmetry. Consistent with their A+T-richness and strong negative roll angle, Y. lipolytica CEN-derived sequences, but not ORIs, were capable of binding isolated Drosophila nuclear scaffolds. However, a Drosophila scaffold attachment region that functions as an ARS in other yeasts was unable to confer autonomous replication to an ORI-containing plasmid. Deletion analysis of CEN1-1 showed that the sequences responsible for the induction of chromosome breakage could be eliminated without compromising extrachromosomal maintenance. We propose that, while Y. lipolytica CEN DNA is essential for plasmid maintenance, this function can be supplied by several sub-fragments which, together, form the active chromosomal centromere. This complex organization of Y. lipolytica centromeres is reminiscent of the regional structures described in the yeast Schizosaccharomyces pombe or in multicellular eukaryotes.  相似文献   

17.
Mann KL  Huxley C 《Gene》2000,241(2):275-285
The fission yeast Schizosaccharomyces pombe (Sch. pombe) has been proposed as a possible cloning host for both mammalian artificial chromosomes (MACs) and mammalian genomic libraries, due to the large size of its chromosomes and its similarity to higher eukaryotic cells. Here, it was investigated for its ability to form telomeres from human telomere sequence and to stably maintain long stretches of alphoid DNA. Using linear constructs terminating in the telomere repeat, T2AG3, human telomere DNA was shown to efficiently seed telomere formation in Sch. pombe. Much of the human telomeric sequence was removed on addition of Sch. pombe telomeric sequence, a process similar to that described in S. cerevisiae. To investigate the stability of alphoid DNA in fission yeast, bacterial artificial chromosomes (BACs) containing 130 and 173 kb of alphoid DNA were retrofitted with the Sch. pombe ars1 element and ura4+ marker using Cre-lox recombination. These alphoid BACs were found to be highly unstable in Sch. pombe deleting down to less than 40 kb, whilst control BACs of 96 and 202 kb, containing non-repetitive DNA, were unrearranged. Alphoid DNA has been shown to be sufficient for human centromere function, and this marked instability excludes Sch. pombe as a useful cloning host for mammalian artificial chromosomes. In addition, regions containing repetitive DNA from mammalian genomes may not be truly represented in libraries constructed in Sch. pombe.  相似文献   

18.
Centromere that plays a pivotal role in chromosome segregation is composed of repetitive elements in many eukaryotes. Although chromosomal regions containing repeats are the hotspots of rearrangements, little is known about the stability of centromere repeats. Here, by using a minichromosome that has a complete set of centromere sequences, we have developed a fission yeast system to detect gross chromosomal rearrangements (GCRs) that occur spontaneously. Southern and comprehensive genome hybridization analyses of rearranged chromosomes show two types of GCRs: translocation between homologous chromosomes and formation of isochromosomes in which a chromosome arm is replaced by a copy of the other. Remarkably, all the examined isochromosomes contain the breakpoint in centromere repeats, showing that isochromosomes are produced by centromere rearrangement. Mutations in the Rad3 checkpoint kinase increase both types of GCRs. In contrast, the deletion of Rad51 recombinase preferentially elevates isochromosome formation. Chromatin immunoprecipitation analysis shows that Rad51 localizes at centromere around S phase. These data suggest that Rad51 suppresses rearrangements of centromere repeats that result in isochromosome formation.  相似文献   

19.
We have integrated a plasmid containing a yeast centromere, CEN5, into the HIS4 region of chromosome III by transformation. Of the three transformant colonies examined, none contained a dicentric chromosome, but all contained a rearranged chromosome III. In one transformant, rearrangement occurred by homologous recombination between two Ty elements; one on the left arm and the other on the right arm of chromosome III. This event produced a ring chromosome (ring chromosome III) of about 60 kb consisting of CEN3 and all other sequences between the two Ty elements. In addition, a linear chromosome (chromosome IIIA) consisting of sequences distal to the two Ty elements including CEN5, but lacking 60 kb of sequences from the centromeric region, was produced. Two other transformants also contain a similarly altered linear chromosome III as well as an apparently normal copy of chromosome III. These results suggest that dicentric chromosomes cannot be maintained in yeast and that dicentric structures must be resolved for the cell to survive.--The meiotic segregation properties of ring chromosome III and linear chromosome IIIA were examined in diploid cells which also contained a normal chromosome III. Chromosome IIIA and normal chromosome III disjoined normally, indicating that homology or parallel location of the centromeric regions of these chromosomes are not essential for proper meiotic segregation. In contrast, the 60-kb ring chromosome III, which is homologous to the centromeric region of the normal chromosome III, did not appear to pair with fidelity with chromosome III.  相似文献   

20.
Lee C  Critcher R  Zhang JG  Mills W  Farr CJ 《Chromosoma》2000,109(6):381-389
The bulk of the DNA found at human centromeres is composed of tandemly arranged repeats, the most abundant of which is alpha satellite. Other human centromeric repetitive families have been identified, one of the more recent being gamma satellite. To date, gamma satellite DNAs have been reported at the centromeres of human chromosomes 8 and X. Here, we show that gamma-X satellite DNA is not interspersed with the major DZX1 alpha-X block, but rather is organised as a single array of approximately 40-50 kb on the short-arm side of the alpha satellite domain. This repeat array is absent on two mitotically stable Xq isochromosomes. Furthermore, a related repeat DNA has been identified on the human Y chromosome. Fluorescence in situ hybridisation has localised this satellite DNA to the long arm side of the major DYZ3 alpha-Y domain, outside the region previously defined as that required for mitotic centromere function. Together, these data suggest that while blocks of highly related gamma satellite DNAs are present in the pericentromeric regions of both human sex chromosomes, this repeated DNA is not required for mitotic centromere function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号