首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The use ofesophageal recordings of the diaphragm electromyogram (EMG) signalstrength to evaluate diaphragm activation during voluntary contractionsin humans has recently been criticized because of a possible artifactcreated by changes in lung volume. Therefore, the first aim of thisstudy was to evaluate whether there is an artifactual influence of lungvolume on the strength of the diaphragm EMG during voluntarycontractions. The second aim was to measure the required changes inactivation for changes in lung volume at a given tension, i.e., thevolume-activation relationship of the diaphragm. Healthy subjects(n = 6) performed contractions of thediaphragm at different transdiaphragmatic pressure (Pdi) targets (range20-160 cmH2O) whilemaintaining chest wall configuration constant at different lungvolumes. The diaphragm EMG was recorded with a multiple-arrayesophageal electrode, with control of signal contamination andelectrode positioning. The effects of lung volume on the EMG werestudied by comparing the crural diaphragm EMG root mean square (RMS),an index of crural diaphragm activation, with an index of globaldiaphragm activation obtained by normalizing Pdi to the maximum Pdi atthe given muscle length(Pdi/Pdimax@L) at thedifferent lung volumes. We observed a direct relationship between RMSand Pdi/Pdimax@L independent of diaphragm length. The volume-activation relationship ofthe diaphragm was equally affected by changes in lung volume as thevolume-Pdi relationship (60% change from functional residual capacityto total lung capacity). We conclude that the RMS of the diaphragm EMGis not artifactually influenced by lung volume and can be used as areliable index of diaphragm activation. The volume-activationrelationship can be used to infer changes in the length-tensionrelationship of the diaphragm at submaximal activation/contractionlevels.

  相似文献   

2.
The purpose of this study was to determine the influence of speed and distance of muscle shortening on the amount of force depression for voluntary contractions. Two experimental tests were performed. In the first test, subjects performed isometric knee extensor contractions following muscle shortening produced by isokinetic knee extensions over the range 25-50 degrees. In the second test, subjects performed isometric knee extensor contractions following muscle shortening produced by isokinetic knee extensions at two speeds: 20 and 240 degrees /s. Knee extensor moments, surface electromyographical (EMG) signals of quadriceps femoris, and interpolated twitch moments were measured during all contractions and were compared with the corresponding values obtained during purely isometric contractions. Force depression following muscle shortening for the voluntary contractions tested in this study did not depend on the distance or the speed of muscle shortening. These results are in contrast to the corresponding results in the literature obtained using artificial electrical stimulation in which force depression was always found to be directly related to the distance of shortening and inversely related to the speed of shortening. The difference in force depression as a function of the distance and speed of muscle shortening between voluntary and artificial electrical stimulation may be associated with changes in activation following the voluntary shortening contractions, whereas activation is controlled and constant in all artificial stimulation protocols.  相似文献   

3.
4.
This study was to investigate the properties of mechanomyography (MMG), or muscle sound, of the paretic muscle in the affected side of hemiplegic subjects after stroke during isometric voluntary contractions, in comparison with those from the muscle in the unaffected side of the hemiplegic subjects and from the healthy muscle of unimpaired subjects. MMG and electromyography (EMG) signals were recorded simultaneously from the biceps brachii muscles of the dominant arm of unimpaired subjects (n=5) and the unaffected and affected arms of subjects after stroke (n=8), when performing a fatiguing maximal voluntary contraction (MVC) associated with the decrease in elbow flexion torque, and then submaximal elbow flexions at 20%, 40%, 60% and 80% MVCs. The root mean squared (RMS) values, the mean power frequencies (MPF, in the power density spectrum, PDS) of the EMG and MMG, and the high frequency rate (HF-rate, the ratio of the power above 15Hz in the MMG PDS) were used for the analysis. The MMG RMS decreased more slowly during the MVC in the affected muscle compared to the healthy and unaffected muscles. A transient increase could be observed in the MMG MPFs from the unaffected and healthy muscles during the MVC, associated with the decrease in their simultaneous EMG MPFs due to the muscular fatigue. No significant variation could be seen in the EMG and MMG MPFs in the affected muscles during the MVC. The values in the MPF and HF-rate of MMG from the affected muscles were significantly lower than those from the healthy and unaffected muscles (P<0.05) at the high contraction level (80% MVC). Both the MMG and EMG RMS values in the healthy and unaffected groups were found to be significantly higher than the affected group (P<0.05) at 60% and 80% MVCs. These observations were related to an atrophy of the fast-twitch fibers and a reduction of the neural input in the affected muscles of the hemiplegic subjects. The results in this study suggested MMG could be used as a complementary to EMG for the analysis on muscular characteristics in subjects after stroke.  相似文献   

5.
The purpose of this study was to investigate the effects of carbohydrate ingestion on force output and time to exhaustion using single leg static contractions superimposed with brief periods of electromyostimulation. Six trained male subjects participated in a randomized, counterbalanced, double-blind study. The subjects were randomly assigned to placebo (PL) or carbohydrate (CHO). The subjects in CHO consumed 1 g of carbohydrate per kilogram of body mass loading dose and 0.17 g of carbohydrate per kilogram of body mass every 6 minutes during the exercise protocol. The PL received an equal volume of a solution made of saccharin and aspartame. The exercise protocol consisted of repeated 20-second static contractions of quadriceps muscle at 50% maximal voluntary contraction followed by 40-second rest until failure occurred. Importantly, the force output during quadriceps maximal voluntary contraction strength with superimposed electromyostimulation was measured in the beginning and every 5 minutes during the last 3 seconds of static contractions throughout the exercise protocol. Venous blood samples were taken preexercise, immediately postexercise, and at 5 minutes postexercise and analyzed for blood lactate. Our results indicate that time to exhaustion (PL = 16.0 ± 8.1 minutes; CHO = 29.0 ± 13.1 minutes) and force output (PL = 3,638.7 ± 524.5 N; CHO = 5,540.1 ± 726.1 N) were significantly higher (p < 0.05) in CHO compared with that in PL. Data suggest that carbohydrate ingestion before and during static muscle contractions can increase force output and increase time to exhaustion. Therefore, our data suggest that carbohydrate supplementation before and during resistance exercise might help increase the training volume of athletes.  相似文献   

6.
It has been observed consistently and is well accepted that the steady-state isometric force after active muscle stretch is greater than the corresponding isometric force for electrically stimulated muscles and maximal voluntary contractions. However, this so-called force enhancement has not been studied for submaximal voluntary efforts; therefore, it is not known whether this property affects everyday movements. The purpose of this study was to determine whether there was force enhancement during submaximal voluntary contractions. Human adductor pollicis muscles (n = 17) were studied using a custom-built dynamometer, and both force and activation were measured while muscle activation and force were controlled at a level of 30% of maximal voluntary contraction. The steady-state isometric force and activation after active stretch were compared with the corresponding values obtained during isometric reference contractions. There was consistent and reliable force enhancement in 8 of the 17 subjects, whereas there was no force enhancement in the remaining subjects. Subjects with force enhancement had greater postactivation potentiation and a smaller resistance to fatigue in the adductor pollicis. We conclude from these results that force enhancement exists during submaximal voluntary contractions in a subset of the populations and suggest that it may affect everyday voluntary movements in this subset. On the basis of follow-up testing, it appears that force enhancement during voluntary contractions is linked to potentiation and fatigue resistance and therefore possibly to the fiber-type distribution in the adductor pollicis muscle.  相似文献   

7.
The purpose of this study was to investigate whether the isometric muscle force, redeveloped following maximal-effort voluntary shortening contractions in human skeletal muscle, is smaller than the purely isometric muscle force at the corresponding length. Isometric knee extensor moments, surface electromyographic (EMG) signals of quadriceps femoris, and interpolated twitch moments (ITMs) were measured while 10 subjects performed purely isometric knee extensor contractions at a 60 degrees knee angle and isometric knee extensor contractions at a 60 degrees knee angle preceded by maximal-effort voluntary shortening of the quadriceps muscles. It was found that the knee extensor moments were significantly decreased for the isometric-shortening-isometric contractions compared with the isometric contractions for the group as a whole, whereas the corresponding EMG and ITM values were the same. This study is the first to demonstrate force depression following muscle shortening for voluntary contractions. We concluded that force depression following muscle shortening is an actual property of skeletal muscle rather than a stimulation artifact and that force depression during voluntary contraction is not accompanied by systematic changes in muscle activation as evaluated by EMG and ITM.  相似文献   

8.
Many algorithms have been described in the literature for estimating amplitude, frequency variables and conduction velocity of the surface EMG signal detected during voluntary contractions. They have been used in different application areas for the non invasive assessment of muscle functions. Although many studies have focused on the comparison of different methods for information extraction from surface EMG signals, they have been carried out under different conditions and a complete comparison is not available. It is the purpose of this paper to briefly review the most frequently used algorithms for EMG variable estimation, compare them using computer generated as well as real signals and outline the advantages and drawbacks of each. In particular the paper focuses on the issue of EMG amplitude estimation with and without pre-whitening of the signal, mean and median frequency estimation with periodogram and autoregressive based algorithms both in stationary and non-stationary conditions, delay estimation for the calculation of muscle fiber conduction velocity.  相似文献   

9.
Exercise performance is impaired by increased respiratory work, yet the mechanism for this is unclear. This experiment assessed whether neural drive to an exercising muscle was affected by cortically driven increases in ventilation. On each of 5 days, eight subjects completed a 2-min maximal voluntary contraction (MVC) of the elbow flexor muscles, followed by 4 min of recovery, while transcranial magnetic stimulation tested for suboptimal neural drive to the muscle. On 1 day, subjects breathed without instructions under normocapnia. During the 2-min MVC, ventilation was approximately 3.5 times that at rest. On another day, subjects breathed without instruction under hypercapnia. During the 2-min MVC, ventilation was approximately 1.5 times that on the normocapnic day. On another 2 days under normocapnia, subjects voluntarily matched their breathing to the uninstructed breathing under normocapnia and hypercapnia using target feedback of the rate and inspiratory volume. On a fifth day under normocapnia, the volume feedback was set to each subject's vital capacity. On this day, ventilation during the 2-min MVC was approximately twice that on the uninstructed normocapnic day (or approximately 7 times rest). The experimental manipulations succeeded in producing voluntary and involuntary hyperpnea. However, maximal voluntary force, fatigue and voluntary activation of the elbow flexor muscles were unaffected by cortically or chemically driven increases in ventilation. Results suggest that any effects of increased respiratory work on limb exercise performance are not due to a failure to drive both muscle groups optimally.  相似文献   

10.
Responses to transcranial magnetic stimulation in human subjects (n = 9) were studied during series of intermittent isometric maximal voluntary contractions (MVCs) of the elbow. Stimuli were given during MVCs in four fatigue protocols with different duty cycles. As maximal voluntary torque fell during each protocol, the torque increment evoked by cortical stimulation increased from approximately 1.5 to 7% of ongoing torque. Thus "supraspinal" fatigue developed in each protocol. The motor evoked potential (MEP) and silent period in the elbow flexor muscles also changed. The silent period lengthened by 20-75 ms (lowest to highest duty cycle protocol) and recovered significantly with a 5-s rest. The MEP increased in area by >50% in all protocols and recovered significantly with 10 s, but not 5 s, of rest. These changes are similar to those during sustained MVC. The central fatigue demonstrated by the torque increments evoked by the stimuli did not parallel the changes in the electromyogram responses. This suggests that part of the fatigue developed during intermittent exercise is "upstream" of the motor cortex.  相似文献   

11.
The objective of this study was to examine the effect of joint angle on the electromyogram (EMG) and mechanomyogram (MMG) during maximal voluntary contraction (MVC). Eight subjects performed maximal isometric plantar flexor torque productions at varying knee and/or ankle angles. Maximal voluntary torque, EMG, and MMG from the soleus (Sol), medial (MG) and lateral gastrocnemius (LG) muscles were measured at different joint angles. At varying knee angles, the root mean squared (rms) MMG amplitude of the MG and LG increased with knee joint extension from 60 degrees to 180 degrees (full extension) in steps of 30 degrees, whereas that of the Sol was constant. At varying ankle angles, the rms-MMG of all muscles (Sol, MG, and LG) decreased with torque as ankle joint extending from 80 degrees (10 degrees dorsiflexion position) to 120 degrees (30 degrees plantar flexion position) in steps of 10 degrees. In each case, changes in the rms-MMG of the three muscles were almost parallel to those in torque. In contrast, there were no significant differences in the rms-EMG of all muscles among all joint angles. Our data suggest that the MMG amplitudes recorded from individual muscles during MVCs can represent relative torque-angle relationships that cannot be represented by the EMG signals.  相似文献   

12.
Magnetic and electrical stimulation at different levels of the neuraxis show that supraspinal and spinal factors limit force production in maximal isometric efforts ("central fatigue"). In sustained maximal contractions, motoneurons become less responsive to synaptic input and descending drive becomes suboptimal. Exercise-induced activity in group III and IV muscle afferents acts supraspinally to limit motor cortical output but does not alter motor cortical responses to transcranial magnetic stimulation. "Central" and "peripheral" fatigue develop more slowly during submaximal exercise. In sustained submaximal contractions, central fatigue occurs in brief maximal efforts even with a weak ongoing contraction (<15% maximum). The presence of central fatigue when much of the available motor pathway is not engaged suggests that afferent inputs contribute to reduce voluntary activation. Small-diameter muscle afferents are likely to be activated by local activity even in sustained weak contractions. During such contractions, it is difficult to measure central fatigue, which is best demonstrated in maximal efforts. To show central fatigue in submaximal contractions, changes in motor unit firing and force output need to be characterized simultaneously. Increasing central drive recruits new motor units, but the way this occurs is likely to depend on properties of the motoneurons and the inputs they receive in the task. It is unclear whether such factors impair force production for a set level of descending drive and thus represent central fatigue. The best indication that central fatigue is important during submaximal tasks is the disproportionate increase in subjects' perceived effort when maintaining a low target force.  相似文献   

13.
The superimposed twitch technique is frequently used to study the degree of motor unit activation during voluntary effort. This technique is one of the preferred methods to determine the activation deficit (AD) in normal, athletic, and patient populations. One of the limitations of the superimposed twitch technique is its variability under given contractile conditions. The objective of this research was to determine the source(s) of variability in the superimposed twitch force (STF) for repeat measurements. We hypothesized that the variability in the AD measurements may be caused by the timing of the twitch force relative to the onset of muscle activation, by force transients during the twitch application, by small variations in the actual force from the nominal target force, and by variations in the resting twitch force. Twenty-eight healthy subjects participated in this study. Sixteen of these subjects participated in a protocol involving contractions at 50% of their maximal voluntary contraction (MVC) effort, whereas the remaining 12 participated in a protocol involving contractions at 100% of their MVC. Doublet-twitch stimuli were superimposed onto the 50 and 100% effort knee extensor muscle contractions, and the resting twitch forces, voluntary knee extensor forces, and STFs were then measured. The mean resting twitch forces obtained before and after 8 s of 50% of MVC were the same. Similarly, the mean STFs determined at 1, 3, 5, and 7 s into the 50% MVC were the same. The variations in twitch force were significantly smaller after accounting for the actual force at twitch application than those calculated from the prescribed forces during the 50% MVC protocol (P < 0.05). Furthermore, the AD and the actual force showed statistically significant negative correlations for the 50% MVC tests. The interpolated twitch torque determined for the maximal effort contractions ranged from 1 to 70%. In contrast to the protocol at 50% of MVC, negative correlations were only observed in 5 of the 12 subjects during the 100% effort contractions. These results suggest that small variations in the actual force from the target force can account for the majority of the variations in the STFs for submaximal but not maximal effort contractions. For the maximal effort contractions, large variations in the STF exist due to undetermined causes.  相似文献   

14.
The present study investigated the effects of submaximal sustained and maximal repetitive contractions on the compliance of human vastus lateralis (VL) tendon and aponeurosis in vivo using two different fatiguing protocols. Twelve male subjects performed three maximum voluntary isometric contractions (MVC) of the knee extensors before and after two fatiguing protocols on a dynamometer. The first fatiguing protocol consisted of a long-lasting sustained isometric knee extension contraction at 25% MVC until failure (inability to hold the defined load). The second fatiguing protocol included long-lasting isokinetic (90°/s) knee extension contractions, where maximum moment was exerted and failure was proclaimed when this value fell below 70% of unfatigued maximum isokinetic moment. Ultrasonography was used to determine the elongation and strain of the VL tendon and aponeurosis. Muscle fatigue was indicated by a significant decrease in maximum resultant knee extension moment (p < 0.05) observed during the MVCs after both long-lasting contractions. No significant (p > 0.05) differences in elongation and strain of the VL tendon and aponeurosis were found, when compared every 300 N (tendon force) before and after the fatiguing protocols. The present data indicate, that the VL tendon and aponeurosis in vivo do not suffer from changes in the compliance neither after long-lasting static mechanical loading (strain ~3.2%) nor after long-lasting cyclic mechanical loading (strain 6.2–5.5%).  相似文献   

15.
The distribution of strain along the soleus aponeurosis tendon was examined during voluntary contractions in vivo. Eight subjects performed cyclic isometric contractions (20 and 40% of maximal voluntary contraction). Displacement and strain in the apparent Achilles tendon and in the aponeurosis were calculated from cine phase-contrast magnetic resonance images acquired with a field of view of 32 cm. The apparent Achilles tendon lengthened 2.8 and 4.7% in 20 and 40% maximal voluntary contraction, respectively. The midregion of the aponeurosis, below the gastrocnemius insertion, lengthened 1.2 and 2.2%, but the distal aponeurosis shortened 2.1 and 2.5%, respectively. There was considerable variation in the three-dimensional anatomy of the aponeurosis and muscle-tendon junction. We suggest that the nonuniformity in aponeurosis strain within an individual was due to the presence of active and passive motor units along the length of the muscle, causing variable force along the measurement site. Force transmission along intrasoleus connective tissue may also be a significant source of nonuniform strain in the aponeurosis.  相似文献   

16.
The time course of muscle fiber conduction velocity and surface myoelectric signal spectral (mean and median frequency of the power spectrum) and amplitude (average rectified and root-mean-square value) parameters was studied in 20 experiments on the tibialis anterior muscle of 10 healthy human subjects during sustained isometric voluntary or electrically elicited contractions. Voluntary contractions at 20% maximal voluntary contraction (MVC) and at 80% MVC with duration of 20 s were performed at the beginning of each experiment. Tetanic electrical stimulation was then applied to the main muscle motor point for 20 s with surface electrodes at five stimulation frequencies (20, 25, 30, 35, and 40 Hz). All subjects showed myoelectric manifestations of muscle fatigue consisting of negative trends of spectral variables and conduction velocity and positive trends of amplitude variables. The main findings of this work are 1) myoelectric signal variables obtained from electrically elicited contractions show fluctuations smaller than those observed in voluntary contractions, 2) spectral variables are more sensitive to fatigue than conduction velocity and the average rectified value is more sensitive to fatigue than the root-mean-square value, 3) conduction velocity is not the only physiological factor affecting spectral variables, and 4) contractions elicited at supramaximal stimulation and frequencies greater than 30 Hz demonstrate myoelectric manifestations of muscle fatigue greater than those observed at 80% MVC sustained for the same time.  相似文献   

17.
18.
The repeatability of initial value and rate of change of mean spectral frequency (MNF), average rectified values (ARV) and muscle fiber conduction velocity (CV) was investigated in the dominant biceps brachii of ten normal subjects during sustained isometric voluntary contractions. Four levels of contraction were studied: 10%, 30%, 50% and 70% of the maximal voluntary contraction level (MVC). Each contraction was repeated three times in each of three different days for a total of nine contractions/level/subject and 90 contractions per level across the ten subjects. Repeatability was investigated using the Intraclass Correlation Coefficient (ICC) and the standard error of the mean (SEM) of the estimates for each subject. Contrary to observations in other muscles, CV estimates appeared to be very repeatable both within and between subjects. CV showed a small but significant increase when contraction force increased from 10% to 50% MVC but no change for further increase of force. As force increased, MNF showed a slight decrease possibly related to a wider spreading of the CV values. The rate of time decrement of MNF and CV increased with the level of contraction. The normalized decrement (% of initial value per second) was in general higher for MNF than for CV and was more repeatable between subjects at 10% MVC than at 70% MVC. A final observation is that a resting time of 5 minutes may not be sufficient after a contraction at 50% or 70% MVC.  相似文献   

19.
PURPOSE: In this study, the influence of using submaximal isokinetic contractions about the knee compared to maximal voluntary contractions as input to obtain the calibration of an EMG-force model for knee muscles is investigated. METHODS: Isokinetic knee flexion and extension contractions were performed by healthy subjects at five different velocities and at three contraction levels (100%, 75% and 50% of MVC). Joint angle, angular velocity, joint moment and surface EMG of five knee muscles were recorded. Individual calibration values were calculated according to [C.A.M. Doorenbosch, J. Harlaar, A clinically applicable EMG-force model to quantify active stabilization of the knee after a lesion of the anterior cruciate ligament, Clinical Biomechanics 18 (2003) 142-149] for each contraction level. RESULTS: First, the output of the model, calibrated with the 100% MVC was compared to the actually exerted net knee moment at the dynamometer. Normalized root mean square errors were calculated [A.L. Hof, C.A.N. Pronk, J.A. van Best, Comparison between EMG to force processing and kinetic analysis for the calf muscle moment in walking and stepping, Journal of Biomechanics 20 (1987) 167-187] to compare the estimated moments with the actually exerted moments. Mean RMSD errors ranged from 0.06 to 0.21 for extension and from 0.12 to 0.29 for flexion at the 100% trials. Subsequently, the calibration results of the 50% and 75% MVC calibration procedures were used. A standard signal, representing a random EMG level was used as input in the EMG force model, to compare the three models. Paired samples t-tests between the 100% MVC and the 75% MVC and 50% MVC, respectively, showed no significant differences (p>0.05). CONCLUSION: The application of submaximal contractions of larger than 50% MVC is suitable to calibrate a simple EMG to force model for knee extension and flexion. This means that in clinical practice, the EMG to force model can be applied by patients who cannot exert maximal force.  相似文献   

20.
Objectives: Muscle stiffness increases during muscle contraction. The purpose of this study was to determine the strength of the correlation between myotonometric measurements of muscle stiffness and surface electromyography (sEMG) measurements during various levels of voluntary isometric contractions of the biceps brachii muscle. Subjects: Eight subjects (four female; four male), with mean age of 30.6±8.23 years, volunteered to participate in this study. Methods: Myotonometer and sEMG measurements were taken simultaneously from the right biceps brachii muscle. Data were obtained: (1) at rest, (2) while the subject held a 15 lb (6.8 kg) weight isometrically and, (3) during a maximal voluntary isometric contraction. Myotonometer force–displacement curves (amount of tissue displacement to a given unit of force applied perpendicular to the muscle) were compared with sEMG measurements using Pearson’s product–moment correlation coefficients. Results: Myotonometer and sEMG measurement correlations ranged from −0.70 to −0.90. The strongest correlations to sEMG were from Myotonometer force measurements between 1.00 and 2.00 kg. Conclusions: Myotonometer and sEMG measurements were highly correlated. Tissue stiffness, as measured by the Myotonometer, appears capable of assessing changes in muscle activation levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号