首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Aims:  To explain the role of Saccharomyces cerevisiae and Saccharomyces uvarum strains (formerly Saccharomyces bayanus var. uvarum ) in wine fermentation.
Methods and Results:  Indigenous Saccharomyces spp. yeasts were isolated from Amarone wine (Italy) and analysed. Genotypes were correlated to phenotypes: Melibiose and Melibiose+ strains displayed a karyotype characterized by three and two bands between 225 and 365 kb, respectively. Two strains were identified by karyotype analysis (one as S. cerevisiae and the other as S. uvarum ). The technological characterization of these two strains was conducted by microvinifications of Amarone wine. Wines differed by the contents of ethanol, residual sugars, acetic acid, glycerol, total polysaccharides, ethyl acetate, 2-phenylethanol and anthocyanins. Esterase and β-glucosidase activities were assayed on whole cells during fermentation at 13° and 20°C. Saccharomyces uvarum displayed higher esterase activity at 13°C, while S. cerevisiae displayed higher β-glucosidase activity at both temperatures.
Conclusions:  The strains differed by important technological and qualitative traits affecting the fermentation kinetics and important aroma components of the wine.
Significance and Impact of the Study:  The contribution of indigenous strains of S. cerevisiae and S. uvarum to wine fermentation was ascertained under specific winemaking conditions. The use of these strains as starters in a winemaking process could differently modulate the wine sensory characteristics.  相似文献   

2.
Ester precursors of fluorogenic or chromogenic probes are often employed in studies of yeast cell biology. This study was aimed at a comparison of the ability of several commonly used laboratory wild-type Saccharomyces cerevisiae strains to hydrolyse the following model esters: fluorescein diacetate, 2-naphthyl acetate, PNPA (p-nitrophenyl acetate) and AMQI (7-acetoxy-1-methylquinolinum iodide). In all the strains, the esterase activity was localized mainly to the cytosol. Considerable differences in esterase activity were observed between various wild-type laboratory yeast strains. The phase of growth also contributed to the variation in esterase activity of the yeast. This diversity implies the need for caution in using intracellularly hydrolysed probes for a comparison of yeast strains with various genetic backgrounds.  相似文献   

3.
We purified an intracellular esterase that can function as an S-formylglutathione hydrolase from the yeast Saccharomyces cerevisiae. Its molecular mass was 40 kDa, as determined by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point was 5.0 by isoelectric focusing. The enzyme activity was optimal at 50 degrees C and pH 7.0. The corresponding gene, YJLO68C, was identified by its N-terminal amino acid sequence and is not essential for cell viability. Null mutants have reduced esterase activities and grow slowly in the presence of formaldehyde. This enzyme may be involved in the detoxification of formaldehyde, which can be metabolized to S-formylglutathione by S. cerevisiae.  相似文献   

4.
The simple test-system has been developed to register mutagenic activity of different chemicals using a model of forward polyene-resistant mutations in Saccharomyces cerevisiae.  相似文献   

5.
Feruloyl esterases constitute an interesting group of enzymes that have the potential for use over a broad range of applications in the agri-food industries. We report the over-expression and characterization of a novel feruloyl esterase exhibiting broad substrate specificity from Talaromyces stipitatus (FAEC) in Pichia pastoris. Using various gene constructions, we have investigated the use of alternative signal peptides to produce an authentic feruloyl esterase featuring the N-terminal sequence determined for the native enzyme. We demonstrate that additional amino acids at the N-terminus of the FAEC sequence do not influence the catalytic capacity of the enzyme, and that the nature of the signal sequence has a limited effect on the yield of the secreted enzyme, with the T. stipitatus FAEC signal sequence producing 297 mgL(-1), the Neurospora crassa Fae-1 260 mgL(-1), and the Saccharomyces cerevisiae alpha-factor secretion signal 214 mgL(-1). Mature FAEC contains two internal peptide sequences that correspond with the consensus motif G-X-S-X-G that contains the catalytic serine nucleophile, which is conserved in the esterase enzyme superfamily. The serine residues at the center of these peptide motifs have been independently mutated and the corresponding enzymes have been over-expressed in P. pastoris to identify the candidate nucleophilic residue responsible for catalyzing the enzymatic reaction. Purified recombinant FAEC containing S465A retained the esterase activity and appeared unaffected by the amino acid modification. In contrast, FAEC activity containing S166A was below the HPLC detection limit, suggesting that serine 166 constitutes the nucleophile.  相似文献   

6.
The possibility of genetic identification of mutations in asporogenic yeast by the technique of intrageneric fusion of yeast protoplasts of Candida tropicals and Saccharomyces cerevisiae has been demonstrated for Candida tropicals strains G5-9 (Ade- Leu-) and G32-4 (Leu-). The mutations to auxotrophy ade- in the strain G5-9 and leu- in G32-4 of Candida tropicals are allelic to ade2 and leu1 mutations in the genes of Saccharomyces cerevisiae yeast. The allelic character of adenine auxotrophy mutation in Candida tropicals and ade2 mutation in Saccharomyces cerevisiae is confirmed by the absence of AIR-carboxylase activity in cellular extract from the strain G5-9.  相似文献   

7.
从无花果曲霉(Aspergillus ficuum)3.4322中用RT-PCR方法扩增出一条约1.4kb的特异性条带,DNA序列测定表明,目的片段为不含信号肽的植酸酶编码序列,全长1347bp。无花果曲霉(Aspergillus ficuum)3.4322phyA基因序列已在GenBank注册(注册号为:AF537344)。将该基因克隆到酵母表达载体pYES2中,构建成不带信号肽phyA基因的重组表达载体pYPA2。用醋酸锂法将pYPA2转进urd缺陷型的酿酒酵母(s.oeraisiae INVSc1),筛选获得含植酸酶基因的酵母转化子。经半乳糖诱导表达后,用磷钼蓝显色(AMES)法对酵母菌体进行酶活测定,测出了明显的植酸酶活性,pYPA2胞内植酸酶活性约11.55IU/mL,表明无花果曲霉(Aspergillus ficuum)3.4322phyA基因能在酿酒酵母中表达。  相似文献   

8.
Here, we report the functional characterization of the newly identified lipid droplet hydrolase Ldh1p. Recombinant Ldh1p exhibits esterase and triacylglycerol lipase activities. Mutation of the serine in the hydrolase/lipase motif GXSXG completely abolished esterase activity. Ldh1p is required for the maintenance of a steady-state level of the nonpolar and polar lipids of lipid droplets. A characteristic feature of the Saccharomyces cerevisiae Δldh1 strain is the appearance of giant lipid droplets and an excessive accumulation of nonpolar lipids and phospholipids upon growth on medium containing oleic acid as a sole carbon source. Ldh1p is thought to play a role in maintaining the lipid homeostasis in yeast by regulating both phospholipid and nonpolar lipid levels.  相似文献   

9.
本文以工业酿酒酵母菌株( Saccharomyces cerevisiae Y )为研究对象,针对其复杂的生理生化遗传特性,建立了相对应的转化体系。以pRS41H质粒为基础载体,构建了含有工业酿酒酵母自身的gpd2启动子、终止子和扣囊复膜孢酵母的b-葡萄糖苷酶基因bgl的重组质粒pRS-gb。电击转化进入工业酿酒酵母细胞,潮霉素抗性筛选,获得重组菌。该重组菌可以在以纤维二糖为唯一碳源的培养基中生长,培养36 h,b-葡萄糖苷酶酶活达到0.967 u/ml。以纤维二糖为唯一碳源的酒精发酵中,酒精度可以达到0.92 g/l。这对工业生产中利用纤维素为原料发酵生产酒精具有重要意义。  相似文献   

10.
The enzyme ADH1 has been extracted and purified from the budding yeast Kluyveromyces marxianus, and its enzymatic activity has been compared, with the ADH1 extracted and purified in the same way from the well known yeast Saccharomyces cerevisiae. K. marxianus ADH1 has an optimal temperature higher than the S. cerevisiae enzyme (45-50 degrees vs 35 degrees C), a better stability to pH variations in the oxidative reaction (pH optimum 7.5), a lower Michaelis constant for acetaldehyde, and a good catalytic activity both for fermentative and oxidative reactions. In fact, while in Saccharomyces the constants ratio (velocity constant fermentation/velocity constant oxidation) is about 20,000, in Kluyveromyces the same ratio is only 15. Even if these two Genera are quite related (they belong to the same subfamily) it seems that their ADH1s possess different catalytic properties.  相似文献   

11.
12.
Two mechanisms of the interaction of low-intensity millimeter electromagnetic emission (bubble and resonance) with model cellular systems (by the example of Saccharomyces cerevisiae) have been investigated. It was shown that the effect of stimulation of cell activity by electromagnetic emission has a clearly pronounced resonance character. A similar effect was evoked by the stimulation of activity of yeast cells by thermal pulse influence, which can be described in terms of the bubble mechanism. It was shown that the electromagnetic emission can affect biological objects by both mechanism.  相似文献   

13.
Radioprotective activity of a polysaccharide preparation from the Indian medicinal plant. Tinospora cordifolia Miers has been established using Saccharomyces cerevisiae X2180 strain as the in vivo test model. The entire activity could be attributed to the radical scavenging capacity of the preparation, as it did not enhance the expression of the protective enzymes, catalase and superoxide dismutase in the yeast cells.  相似文献   

14.
Saccharomyces cerevisiae expresses a 67.8 kDa homodimeric serine thioesterase, S-formylglutathione hydrolase (SFGH), that is 39.9% identical with human esterase D. Both enzymes possess significant carboxylesterase and S-formylglutathione thioesterase activity but are unusually resistant to organophosphate (OP) inhibitors. We determined the X-ray crystal structure of yeast (y) SFGH to 2.3 A resolution by multiwavelength anomalous dispersion and used the structure to guide site-specific mutagenesis experiments addressing substrate and inhibitor reactivity. Our results demonstrate a steric mechanism of OP resistance mediated by a single indole ring (W197) located in an enzyme "acyl pocket". The W197I substitution enhances ySFGH reactivity with paraoxon by >1000-fold ( k i (W197I) = 16 +/- 2 mM (-1) h (-1)), thereby overcoming natural OP resistance. W197I increases the rate of OP inhibition under pseudo-first-order conditions but does not accelerate OP hydrolysis. The structure of the paraoxon-inhibited W197I variant was determined by molecular replacement (2.2 A); it revealed a stabilized sulfenic acid at Cys60. Wild-type (WT) ySFGH is inhibited by thiol reactive compounds and is sensitive to oxidation; thus, the cysteine sulfenic acid may play a role in the regulation of a "D-type" esterase. The structure of the W197I variant is the first reported cysteine sulfenic acid in a serine esterase. We constructed five Cys60/W197I variants and show that introducing a positive charge near the oxyanion hole, W197I/C60R or W197I/C60K, results in a further enhancement of the rates of phosphorylation with paraoxon ( k i = 42 or 80 mM (-1) h (-1), respectively) but does not affect the dephosphorylation of the enzyme. We also characterized three histidine substitutions near the oxyanion hole, G57H, L58H, and M162H, which significantly decrease esterase activity.  相似文献   

15.
16.
遗传学是研究生物的遗传与变异的科学,是研究基因的结构、功能、变异、传递和表达规律的学科.遗传学发展的早期,遗传学家们研究的对象很广泛,随着时代的发展,才逐渐地集中到一些特定  相似文献   

17.
Regulation of inositol monophosphatase in Saccharomyces cerevisiae   总被引:2,自引:2,他引:0  
Inositol monophosphatase is a key enzyme in the de novo biosynthesis of inositol and in the phosphoinositide second-messenger signalling pathway. Inhibition of this enzyme is a proposed mechanism for lithium's pharmacological action in bipolar illness (manic depression). Very little is known about how expression of this enzyme is regulated. Because the yeast Saccharomyces cerevisiae has been shown to be an excellent model system in which to understand the regulation of inositol metabolism, we characterized inositol monophosphatase in this yeast. Lithium inhibited monophosphatase activity in vitro . Growth in the presence of inositol resulted in increased expression of the enzyme in vivo , although inositol had no effect on enzyme activity in vitro . The inositol effect was apparent when cells were grown in glucose but not in glycerol/ethanol. Monophosphatase activity was derepressed as cells entered stationary phase. This effect was apparent only during growth in glucose plus inositol. The results demonstrate that S. cerevisiae monophosphatase is inhibited by lithium and regulated by factors affecting phospholipid biosynthesis.  相似文献   

18.
A mutant of Saccharomyces cerevisiae that lacks glutamate synthase (GOGAT) activity has been isolated. This mutant was obtained after chemical mutagenesis of a NADP-glutamate dehydrogenase-less mutant strain. The gdh gus mutant is a glutamate auxotroph. The genetic analysis of the gus mutant showed that the GOGAT-less phenotype is due to the presence of two loosely linked mutations. Evidence is presented which suggests the possibility that S. cerevisiae has two GOGAT activities, designated GOGAT A and GOGAT B. These activities can be distinguished by their pH optima and by their regulation by glutamate. Furthermore, one of the mutations responsible for the GOGAT-less phenotype affected GOGAT A activity, while the other mutation affected GOGAT B activity.  相似文献   

19.
利用统合生物加工过程(Consolidated bioprocessing,CBP)生产纤维素乙醇是目前国内外的研究热点。CBP需要一种“集成化”微生物,既能生产水解木质纤维素的多种酶类又能利用水解木质纤维素产生的糖类发酵产乙醇。以酿酒酵母表面展示技术为依托,建立CBP菌株多酶共展示体系的研究主要分为以下两个方向:一是直接将纤维素酶展示在细胞表面,即非复合型纤维素酶体系;另一种是通过表面展示纤维小体(Cellulosome)将纤维素酶间接地锚定在细胞表面,即复合型纤维素酶体系,本文主要从以上两个方向阐述了近几年对于纤维素乙醇生物统合加工过程的研究进展。因纤维小体对纤维素的降解能力比非复合型纤维素酶体系更强,所以其在酿酒酵母细胞表面的组装研究受到越来越多的关注,为了更深入透彻地了解纤维小体的酵母展示技术,文中对纤维小体的结构与功能及其在纤维素乙醇发酵中的应用研究进行重点论述,并对该领域的发展方向进行展望。  相似文献   

20.
Effect of dimethyl sulphoxide (DMSO) on mitochondrial biogenesis in regenerating rat liver and cells of Saccharomyces cerevisiae during aerobiosis has been studied by monitoring the cytochrome oxidase activity. A single dose of DMSO (275 mg/100-125 g body wt) to normal rats stimulated cytochrome oxidase activity in liver mitochondria while the same dose to partial hepatectomized rats inhibited the enzyme activity. Administration of low dose of DMSO (92 mg/100-125 g body wt) to partial hepatectomized rats did not alter the enzyme activity. Anaerobic cells of S. cerevisiae on aerobiosis for 2 hr attained cytochrome oxidase activity level on par with aerobic cells. Inclusion of DMSO (275 mg/100 ml) in the growth medium of S. cerevisiae during respiratory adaptation exerted partial inhibitory effect on the formation of cytochrome oxidase at 2 hr period, while the 10-fold concentration inhibited the enzyme formation completely. However, the inhibitory effect of DMSO on enzyme formation was abolished on prolonged growth (18 hr and above), while these doses had no influence on cytochrome oxidase in aerobic cells of S. cerevisiae. The results imply that DMSO may be exerting its effect on the assembly of subunits into active enzyme complex during mitochondrial biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号