首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elastin-like polypeptides (ELPs) undergo a reversible inverse phase transition upon a change in temperature. This thermally triggered phase transition allows for a simple and rapid means of purifying a fusion protein. Recovery of ELPs-tagged fusion protein was easily achieved by aggregation, triggered either by raising temperature or by adding salt. In this study, levansucrase has been used as a model enzyme in the development of a simple one-step purification method using ELPs. The levansucrase gene cloned from Pseudomonas aurantiaca S-4380 was tagged with various sizes of ELPs to functionally express and optimize the purification of levansucrase. One of two ELPs, ELP[V-20] or ELP[V-40], was fused at the C-terminus of the levansucrase gene. A levansucrase-ELP fusion protein was expressed in Escherichia coli DH5alpha at 37 degrees C for 18 h. The molecular masses of levansucrase-ELP[V-20] and levansucrase-ELP[V-40] were determined as 56 kDa and 65 kDa, respectively. The phase transition of levansucrase-ELP[V-20] occurred at 20 degrees C in 50 mM Tris-Cl (pH 8) buffer with 3 M NaCl added, whereas the phase transition temperature (Tt) of levansucrase-ELP[V-40] was 17 degrees C with 2 M NaCl. Levansucrase was successfully purified using the phase transition characteristics of ELPs, with a recovery yield of higher than 80%, as verified by SDS-PAGE. The specific activity was measured spectrophotometrically to be 173 U/mg and 171 U/mg for levansucrase-ELP[V-20] and levansucrase-ELP[V-40], respectively, implying that the ELP-tagging system provides an efficient one-step separation method for protein purification.  相似文献   

2.
Like natural tropoelastin, polypeptides based on an elastin-like VPGXG repeat have a characteristic inverse temperature response, which leads to coacervate formation above a certain transition temperature and which could be useful for a variety of applications. The key advantage of elastin-like polypeptides (ELPs) over (tropo)elastin is a full control over this temperature response by adjustment of either the amino acid composition or the chain length, according to insights provided by extensive research. Future application of ELPs will require efficient ELP production systems, and in a previous article, we described the successful use of Pichia pastoris for secreted production of an ELP, with an overall yield of ≈ 200 mg L(-1). In this study, we investigated the influence of changed amino acid composition and chain length on the yield of secreted ELP. We have found that both parameters have a distinct impact on the overall yield, with higher yield for shorter and more hydrophilic ELPs. Because yield and transition temperature (Tt) thus appear to be positively correlated, we hypothesize that good solubility of ELP below the Tt promotes the secreted production and coacervate formation above Tt decreases it.  相似文献   

3.
本文利用SpyTag/SpyCatcher特性构建了三臂星型结构的类弹性蛋白多肽(elastin like polypeptides, ELPs),考察其在不同溶剂,如分子拥挤试剂、osmolytes及深共熔溶剂(deep eutectic solvents,DESs)中的相变温度及行为,并与含有相同ELPs重复数的线性ELPs120作对比。结果表明:在不同浓度拥挤试剂PEG2000作用下,两种结构的ELPs相变温度均降低,当其各自浓度均为25 μmol/L时,三臂星型ELPs相变温度降低3℃~13℃,而ELPs120相变温度仅降低1.5℃~10.8℃。此外,在添加PEG2000后,三臂星型ELPs相变缓慢;在不同类型和浓度的osmolytes溶液中,25 μmol/L三臂星型ELPs相变温度明显要比线性ELPs高8℃左右;在DESs体系中,三臂星型ELPs有类似与水溶液中的相变行为,且其相变温度受到抑制,另外三臂星型ELPs和ELPs120在DESs/PBS体系中,与在(氯化胆碱+尿素)/PBS体系中的相变行为一致,其中当DESs体积含量为50%,ELPs120相变温度是最低的。由于ELPs在非单一缓冲液体系中的相变行为不同,这丰富了ELPs作为纯化标签的应用,且在非单一缓冲液体系中因降低了相变温度,节约了纯化融合蛋白的经济成本,同时也为研究ELPs拓扑结构与其相变行为之间的关系奠定理论基础。  相似文献   

4.
Elastin-like polypeptides (ELPs) are artificial polypeptides with unique properties that make them attractive as a biomaterial for tissue-engineered cartilage repair. ELPs are composed of a pentapeptide repeat, Val-Pro-Gly-Xaa-Gly (Xaa is any amino acid except Pro), that undergo an inverse temperature phase transition. They are soluble in aqueous solution below their transition temperature (T(t)) but aggregate when the solution temperature is raised above their T(t). This study investigates the rheological behavior of an un-cross-linked ELP, below and above its T(t), and also examines the ability of ELP to promote chondrogenesis in vitro. A thermally responsive ELP with a T(t) of 35 degrees C was synthesized using recombinant DNA techniques. The complex shear modulus of the ELP increased by 3 orders of magnitude as it underwent its inverse temperature phase transition, forming a coacervate, or gel-like, ELP phase. Values for the complex shear moduli of the un-cross-linked ELP coacervate are comparable to those reported previously for collagen, hyaluronan, and cross-linked synthetic hydrogels. Cell culture studies show that chondrocytes cultured in ELP coacervate maintain a rounded morphology and their chondrocytic phenotype, characterized by the synthesis of a significant amount of extracellular matrix composed of sulfated glycosaminoglycans and collagen. These results suggest that ELPs demonstrate great potential for use as in situ forming scaffolds for cartilaginous tissue repair.  相似文献   

5.
Elastin-like polypeptides (ELPs) are peptide-based biomaterials with residue sequence (VPGXG)n where X is any residue except proline. ELPs are a useful modality for delivering biologically active proteins (growth factors, protease inhibitors, anti-inflammatory peptides, etc.) as fusion proteins (ELP-FP). ELP-FPs are particularly cost-effective because they can be rapidly purified using Inverse Temperature Cycling (ITC) via the reversible formation and precipitation of entropically driven aggregates above a transition temperature (Tt). When ELP fusion proteins (ELP-FPs) contain significant charge density at physiological pH, electrostatic repulsion between them severely inhibits aggregate formation. The literature does not currently describe methods for purifying ELP-FPs containing charged proteins on either side of the ELP sequence as fusion partners without organic solvents. Here, the isoelectric point (pI) of ELP-FPs is discussed as a means of neutralizing surface charges on ELP-FPs and increasing ITC yield to dramatically high levels. We use pI-based phase separation (pI-BPS) to purify ELP-FPs containing cationic and anionic fusion proteins. We report a dramatic increase in protein yield when using pI-BPS for purification of ELP-FPs. Proteins purified by this method also retain the functional activity of the protein present in the ELP-FP. Techniques developed here enable significant diversification of possible fusion proteins delivered by ELPs as ELP-FPs by allowing them to be produced and purified at higher quantities and yields.  相似文献   

6.
Protein polymers are repetitive polypeptides produced by ribosomal biosynthetic pathways; furthermore, they offer emerging opportunities in drug and biopharmaceutical delivery. As for any polymer, biodegradation is one of the most important determinants affecting how a protein polymer can be utilized in the body. This study was designed to characterize the proteolytic biodegradation for a library of protein polymers derived from the human tropoelastin, the Elastin-like polypeptides (ELPs). ELPs are of particular interest for controlled drug delivery because they reversibly transition from soluble to insoluble above an inverse phase transition temperature (T(t)). More recently, ELP block copolymers have been developed that can assemble into micelles; however, it remains unclear if proteases can act on these ELP nanoparticles. For the first time, we demonstrate that ELP nanoparticles can be degraded by two model proteases and that comparable proteolysis occurs after cell uptake into a transformed culture of murine hepatocytes. Both elastase and collagenase endopeptidases can proteolytically degrade soluble ELPs. To our surprise, the ELP phase transition was protective against collagenase but not to elastase activity. These findings enhance our ability to predict how ELPs will biodegrade in different physiological microenvironments and are essential to develop protein polymers into biopharmaceuticals.  相似文献   

7.
In general, proteins fold with hydrophobic residues buried, away from water. Reversible protein folding due to hydrophobic interactions results from inverse temperature transitions where folding occurs on raising the temperature. Because homoiothermic animals constitute an infinite heat reservoir, it is the transition temperature, Tt, not the endothermic heat of the transition, that determines the hydrophobically folded state of polypeptides at body temperature. Reported here is a new hydrophobicity scale based on the values of Tt for each amino acid residue as a guest in a natural repeating peptide sequence, the high polymers of which exhibit reversible inverse temperature transitions. Significantly, a number of ways have been demonstrated for changing Tt such that reversibly lowering Tt from above to below physiological temperature becomes a means of isothermally and reversibly driving hydrophobic folding. Accordingly, controlling Tt becomes a mechanism whereby proteins can be induced to carry out isothermal free energy transduction.  相似文献   

8.
Elastin‐like polypeptide (ELP) fusions have been designed to allow large‐scale, nonchromatographic purification of many soluble proteins by using the inverse transition cycling (ITC) method; however, the sensitivity of the aqueous lower critical solubility phase transition temperature (Tt) of ELPs to the addition of cosolutes, including detergents, may be a potential hindrance in purification of proteins with surface hydrophobicity in such a manner. To identify detergents that are known to solubilize such proteins (e.g., membrane proteins) and that have little effect on the Tt of the ELP, we screened a number of detergents with respect to their effects on the Tt and secondary structures of a model ELP (denoted here as ELP180). We found that mild detergents (e.g., n‐dodecyl‐β‐D ‐maltoside, Triton‐X100, and 3‐[(3‐cholamidopropyl) dimethylamino]‐1‐propanesulfonate) do not alter the phase transition behavior or structure (as probed by circular dichroism) of ELP180. This result is in contrast to previous studies that showed a strong effect of other detergents (e.g., sodium dodecylsulfate) on the Tt of ELPs. Our results clearly indicate that mild detergents do not preclude ITC‐based separation of ELPs, and thus that ELP fusions may prove to be useful in the purification of detergent‐solubilized recombinant hydrophobic proteins, including membrane proteins, which are otherwise notoriously difficult to extract and purify by conventional separation methods (e.g., chromatography). © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Elastin-like polypeptides (ELP) are artificial, genetically encodable biopolymers, belonging to elastomeric proteins, which are widespread in a wide range of living organisms. They are composed of a repeating pentapeptide sequence Val–Pro–Gly–Xaa–Gly, where the guest residue (Xaa) can be any naturally occurring amino acid except proline. These polymers undergo reversible phase transition that can be triggered by various environmental stimuli, such as temperature, pH or ionic strength. This behavior depends greatly on the molecular weight, concentration of ELP in the solution and composition of the amino acids constituting ELPs. At a temperature below the inverse transition temperature (Tt), ELPs are soluble, but insoluble when the temperature exceeds Tt. Furthermore, this feature is retained even when ELP is fused to the protein of interest. These unique properties make ELP very useful for a wide variety of biomedical applications (e.g. protein purification, drug delivery etc.) and it can be expected that smart biopolymers will play a significant role in the development of most new materials and technologies. Here we present the structure and properties of thermally responsive elastin-like polypeptides with a particular emphasis on biomedical and biotechnological application.  相似文献   

10.
Elastin-like polypeptides (ELPs) have a distinctive thermal property, transition temperature (Tt), which leads to phase transition. This thermal property depends on the molecular weight (MW) of ELP, ELP concentration, composition of the amino acids constituting ELPs, and ionic strength of the aqueous solution. In order to investigate the effects of ELP length, ionic strength and existence of fusion protein, ELP genes of three different sizes were cloned using the recursive directional ligation (RDL) method and expressed in Escherichia coli. Following purification, thermal behaviors of ELPs were monitored using a spectrophotometer with temperature scanning. The results of our study indicated that Tt shifted to low in accordance with ELP length or increased ionic strength. Additionally, it was observed that Tt was affected by the physical properties of the protein fused with ELPs.  相似文献   

11.
A bifunctional fusion protein consisting of organophosphorus hydrolase (OPH) and elastin-like polypeptide (ELP) was synthesized for the detoxification of organophosphorus compounds. ELPs undergo a reversible phase transition upon an increase in temperature, forming hydrophobic aggregates. This thermally triggered property of phase transition allows for a simple and rapid means of purifying the fusion protein. Over 1,300-fold purification was achieved after only 2 cycles of inverse phase transition. The purified fusion protein showed identical kinetic properties as the native OPH with only a modest 10% increase in K(m) and a 5% decrease of K(cat). The ability of the ELP domain to form collapsed aggregates also improved long-term stability of the fusion enzyme. Aggregated ELP-OPH retained nearly 100% activity over a span of three weeks. In addition to facilitating purification and stability, the ELP moiety served as a hydrophobic tag for one-step immobilization of the fusion protein onto hydrophobic surfaces. The ELP-OPH was capable of rapidly degrading paraoxon while immobilized. The protein also retained ELP functionality of reversible phase transition thereby allowing for the regeneration of the treated surface. This technology offers a swift and convenient means for purification, immobilization, and regeneration of OPH onto a variety of hydrophobic surfaces by simple environmental triggers.  相似文献   

12.
This article describes a simple and potentially scalable microfiltration method for purification of recombinant proteins. This method is based on the fact that when an elastin-like polypeptide (ELP) is fused to a target protein, the inverse phase transition behavior of the ELP tag is imparted to the fusion protein. Triggering the phase transition of a solution of the ELP fusion protein by an increase in temperature, or isothermally by an increase in salt concentration, results in the formation of micron-sized aggregates of the ELP fusion protein. In this article, it is shown that these aggregates are efficiently retained by a microfiltration membrane, while contaminating E. coli proteins passed through the membrane upon washing. Upon reversing the phase transition by flow of Milli-Q water, soluble, pure, and functionally active protein is eluted from the membrane. Proof-of principle of this approach was demonstrated by purifying a fusion of thioredoxin with ELP (Trx-ELP) with greater than 95% recovery of protein and with greater than 95% purity (as estimated from SDS-PAGE gels). The simplicity of this method is demonstrated for laboratory scale purification by purifying Trx-ELP from cell lysate using a syringe and a disposable microfiltration cartridge. The potential scalability of this purification as an automated, continuous industrial-scale process is also demonstrated using a continuous stirred cell equipped with a microfiltration membrane.  相似文献   

13.
While elastin‐like polypeptides and peptides (ELPs) have been used for various stimulus‐responsive applications, details of their switching remain unclear. We therefore constructed a novel series of filamentous phage particles displaying a high surface density of short ELPs. The surface display of ELPs did not disrupt either particle shape or dimensions, and the resulting ELP‐phage particles were colloidally stable over several weeks. However, in spite of a saturating surface density, macroscopic aggregation of ELP‐phages cannot be triggered in water. To investigate the underlying mechanisms we examined conformational changes in the secondary structure of the phage proteins by circular dichroism and tryptophan fluorescence, which indicate partial protein unfolding in ELP‐phage particles. To gain further insight into the ELP itself, analogous “free” ELP peptides were synthesized and characterized. Circular dichroism of these peptides shows the onset of β‐type conformations with increasing temperature, consistent with the accepted view of the microscopic transition that underlies the inverse phase behavior of ELPs. Increased guest residue hydrophobicity was found to depress the microscopic transition temperature of the peptides, also consistent with a previously proposed intramolecular hydrogen‐bonding mechanism. Importantly, our results indicate that although the nanoscale presentation state can suppress macroscopic aggregation of ELPs, microscopic transitions of the ELP can still occur. Given the growing use of ELPs within supra‐molecular scaffolds, such effects are important design considerations for future applications. Biotechnol. Bioeng. 2013; 110: 1822–1830. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
类弹性蛋白(Elastin-like polypeptides,ELPs)是属于弹性蛋白中的一种且具有温控性的生物大分子,本文研究拥挤试剂对不同拓扑结构ELPs相变温度的影响,利用温控-紫外分光光度计研究其相变特性,结果发现,随着PEG2000浓度的增加,T-E-F的相变温度下降11.9~17.1℃;在固定Tadpole-like-E浓度下,随着PEG2000浓度的增加,Tadpole-like-E的相变温度降低11.5~16℃,其中,25 μmol/L的Tadpole-like-E其相变速度缓慢;ELPs浓度越大,其相变温度降低愈大,且PEG2000影响ELPs相变温度的趋势与ELPs的拓扑结构关系不大。另外,在简单的PBS缓冲溶液中加入PEG2000,可以使E-C在浓度<0.5 mol/L的Na2CO3中发生相变,且随着PEG2000浓度的增加,E-C相变温度逐渐降低。本研究为今后ELPs在复杂体系的应用提供前期的基础研究。  相似文献   

15.
Thermally responsive elastin like polypeptides (ELPs) can be used to purify proteins from Escherichia coli culture when proteins are expressed as a fusion with an ELP. Nonchromatographic purification of ELP fusion proteins, termed inverse transition cycling (ITC), exploits the reversible soluble-insoluble phase transition behavior imparted by the ELP tag. Here, we quantitatively compare the expression and purification of ELP and oligohistidine fusions of chloramphenicol acetyltransferase (CAT), blue fluorescent protein (BFP), thioredoxin (Trx), and calmodulin (CalM) from both a 4-h culture with chemical induction of the plasmid-borne fusion protein gene and a 24-h culture without chemical induction. The total protein content and functional activity were quantified at each ITC purification step. For CAT, BFP, and Trx, the 24-h noninduction culture of ELP fusion proteins results in a sevenfold increase in the yield of each fusion protein compared to that obtained by the 4-h-induced culture, and the calculated target protein yield is similar to that of their equivalent oligohistidine fusion. For these proteins, ITC purification of fusion proteins also results in approximately 75% recovery of active fusion protein, similar to affinity chromatography. Compared to chromatographic purification, however, ITC is inexpensive, requires no specialized equipment or reagents, and because ITC is a batch purification process, it is easily scaled up to accommodate larger culture volumes or scaled down and multiplexed for high-throughput, microscale purification; thus, potentially impacting both high-throughput protein expression and purification for proteomics and large scale, cost-effective industrial bioprocessing of pharmaceutically relevant proteins.  相似文献   

16.
Peptide amphiphiles (PAs) self-assemble nanostructures with potential applications in drug delivery and tissue engineering. Some PAs share environmentally responsive behavior with their peptide components. Here we report a new type of PAs biologically inspired from human tropoelastin. Above a lower critical solution temperature (LCST), elastin-like polypeptides (ELPs) undergo a reversible inverse phase transition. Similar to other PAs, elastin-like PAs (ELPAs) assemble micelles with fiber-like nanostructures. Similar to ELPs, ELPAs have inverse phase transition behavior. Here we demonstrate control over the ELPAs fiber length and cellular uptake. In addition, we observed that both peptide assembly and nanofiber phase separation are accompanied by a distinctive secondary structure attributed primarily to a type-1 β turn. We also demonstrate increased solubility of hydrophobic paclitaxel (PAX) in the presence of ELPAs. Due to their biodegradability, biocompatibility, and environmental responsiveness, elastin-inspired biopolymers are an emerging platform for drug and cell delivery; furthermore, the discovery of ELPAs may provide a new and useful approach to engineer these materials into stimuli-responsive gels and drug carriers.  相似文献   

17.
Affinity purification of plasmid DNA by temperature-triggered precipitation   总被引:4,自引:0,他引:4  
This report describes a new plasmid DNA purification method, which takes advantage of the DNA-binding affinity and specificity of the bacterial metalloregulatory protein MerR, and of the temperature responsiveness of elastin-like proteins (ELPs). Upon increasing the temperature, ELP undergoes a reversible phase transition from water-soluble forms into aggregates, and this property was exploited for the precipitation of plasmid DNA containing the MerR recognition sequence by a simple temperature trigger. In one purification step, plasmid DNA was purified from E. coli cell lysates to a better purity than that prepared by a standard alkaline purification method, with no contaminating chromosomal DNA and cellular proteins. This protein-based approach, in combination with the reversible phase transition feature of ELP, makes the outlined method a promising candidate for large-scale purification of plasmid DNA for sensitive applications such as nonviral gene therapy or DNA vaccines.  相似文献   

18.
This work explores the dependence of the inverse temperature transition of elastin-like polymers (ELPs) on the amino-acid sequence, i.e., the amino-acid arrangement along the macromolecule and the resulting linear distribution of the physical properties (mainly polarity) derived from it. The hypothesis of this work is that, in addition to mean polarity and molecular mass, the given amino-acid sequence, or its equivalent—the way in which polarity is arranged along the molecule—is also relevant for determining the transition temperature and the latent heat of that transition. To test this hypothesis, a set of linear and di- and triblock ELP copolymers were designed and produced as recombinant proteins. The absolute sequence control provided by recombinant technologies allows the effect of the amino-acid arrangement to be isolated while keeping the molecular mass or mean polarity under strict control. The selected block copolymers were made of two different ELPs: one exhibiting temperature and pH responsiveness, and one exhibiting temperature responsiveness only. By changing the arrangement and length of the blocks while keeping other parameters, such as the molecular mass or mean polarity, constant, we were able to show that the sequence plays a key role in the smart behavior of ELPs.  相似文献   

19.
The feature of elastin-like proteins (ELPs) to reversibly precipitate above their transition temperature was exploited as a general method for the purification of histidine (His)-tagged proteins. The principle of the single-step metal-affinity method is based on coordinated ligand-bridging between the modified ELPs and the target proteins. ELPs with repeating sequences of [(VPGVG)(2)(VPGKG)(VPGVG)(2)](21) were synthesized and the free amino groups on the lysine residues were modified by reacting with imidazole-2-carboxyaldehyde to incorporate the metal-binding ligands into the ELP bio- polymers. Biopolymers charged with Ni(2+) were able to interact with a His tag on the target proteins based on metal coordination chemistry. Purifications of two His-tagged enzymes, beta-D-galactosidase and chloramphenicol acetyltransferase, were used to demonstrate the utility of this general method and over 85% recovery was observed in both cases. The bound enzymes were easily released by addition of either EDTA or imidazole. The recovered ELPs were reused four times with no observable decrease in the purification performance.  相似文献   

20.
【目的】抗菌肽YFGAP由32个氨基酸组成,分子量为3.4 kD,对革兰氏阳性菌(G+)和革兰氏阴性菌(G?)表现出强效的抑制作用,不具有溶血活性。在大肠杆菌中表达抗菌肽YFGAP,分离纯化抗菌肽并鉴定其生物学活性。【方法】化学合成EK-YFGAP和L-EK-YFGAP基因序列,构建表达载体pET22b-ELP20-EK-YFGAP、pET22b-ELP40-EK-YFGAP和pET22b-ELP40-L-EK- YFGAP,分别转化至大肠杆菌BL21(DE3)中诱导表达,可逆相变循环纯化融合蛋白。肠激酶酶切,经Vivaspin Turbo纯化柱纯化,测定重组抗菌肽的抑菌活性和溶血活性。【结果】纯化出两种融合蛋白ELP40-EK-YFGAP和ELP40-L-EK-YFGAP,肠激酶酶切纯化后获得重组抗菌肽YFGAP,对4种病原菌均有抑制效果,溶血活性较低。【结论】以ELPs作为非色谱纯化标签,实现了抗菌肽YFGAP的融合表达,具有操作简单、成本低、易于扩大的优势,为重组抗菌肽的量化制备及应用提供了理论基础和技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号