首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 942 毫秒
1.
2.
In this work, we used antibodies against histone H3 trimethylated at lysine 9 (H3K9m3); against histone H4 acetylated at lysines 5, 8, 12, and 16 (H4ac); and against DNA methylated at 5C cytosine (m5C) to study the presence and distribution of these markers in the genome of the isopod crustacean Asellus aquaticus. The use of these 3 antibodies to immunolabel spermatogonial metaphases yields reproducible patterns on the chromosomes of this crustacean. The X and Y chromosomes present an identical banding pattern with each of the antibodies. The heterochromatic telomeric regions and the centromeric regions are rich in H3K9m3, but depleted in m5C and H4ac. Thus, m5C does not seem to be required to stabilize the silence of these regions in this organism.  相似文献   

3.
Histone modifications and DNA methylation represent two layers of heritable epigenetic information that regulate eukaryotic chromatin structure and gene activity. UHRF1 is a unique factor that bridges these two layers; it is required for maintenance DNA methylation at hemimethylated CpG sites, which are specifically recognized through its SRA domain and also interacts with histone H3 trimethylated on lysine 9 (H3K9me3) in an unspecified manner. Here we show that UHRF1 contains a tandem Tudor domain (TTD) that recognizes H3 tail peptides with the heterochromatin-associated modification state of trimethylated lysine 9 and unmodified lysine 4 (H3K4me0/K9me3). Solution NMR and crystallographic data reveal the TTD simultaneously recognizes H3K9me3 through a conserved aromatic cage in the first Tudor subdomain and unmodified H3K4 within a groove between the tandem subdomains. The subdomains undergo a conformational adjustment upon peptide binding, distinct from previously reported mechanisms for dual histone mark recognition. Mutant UHRF1 protein deficient for H3K4me0/K9me3 binding shows altered localization to heterochromatic chromocenters and fails to reduce expression of a target gene, p16(INK4A), when overexpressed. Our results demonstrate a novel recognition mechanism for the combinatorial readout of histone modification states associated with gene silencing and add to the growing evidence for coordination of, and cross-talk between, the modification states of H3K4 and H3K9 in regulation of gene expression.  相似文献   

4.
We report here the molecular and cytological characterization of two proteins, ScoHET1 and ScoHET2 (for Sciara coprophila heterochromatin), which associate to constitutive heterochromatin in the dipteran S. coprophila. Both proteins, ScoHET1 of 37 kDa and ScoHET2 of 44 kDa, display two chromodomain motifs that contain the conserved residues essential for the recognition of methylated histone H3 at lysine 9. We raised antibodies to analyze the chromosomal location of ScoHET1 and ScoHET2 in somatic and germline cells. In S. coprophila polytene chromosomes, both proteins associate to the pericentromeric regions and to the heterochromatic subterminal bands of the chromosomes. In germinal nuclei, ScoHET1 and ScoHET2 proteins distribute to the heterochromatic regions of the regular chromosome complement and are abundantly present along the heterochromatic germline-limited “L” chromosomes. We investigated histone methylation modifications and found that all heterochromatic regions enriched in ScoHET1/ScoHET2 proteins exhibit high levels of di- and tri-methylated histone H3 at lysine 9. Taken together, our results support that the association of ScoHET1/ScoHET2 to heterochromatin is mediated by histone H3K9 methylation. Using 5-methylcytosine antibodies, we proved the cytological detection of DNA methylation in S. coprophila. From our observations in L germline chromosomes, heterochromatin in S. coprophila is highly enriched in DNA 5-methylcytosine residues. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
6.
7.
8.
Mammalian telomeres have heterochromatic features, including trimethylated histone H3 at lysine 9 (H3K9me3) and trimethylated histone H4 at lysine 20 (H4K20me3). In addition, subtelomeric DNA is hypermethylated. The enzymatic activities responsible for these modifications at telomeres are beginning to be characterized. In particular, H4K20me3 at telomeres could be catalyzed by the novel Suv4-20h1 and Suv4-20h2 histone methyltransferases (HMTases). In this study, we demonstrate that the Suv4-20h enzymes are responsible for this histone modification at telomeres. Cells deficient for Suv4-20h2 or for both Suv4-20h1 and Suv4-20h2 show decreased levels of H4K20me3 at telomeres and subtelomeres in the absence of changes in H3K9me3. These epigenetic alterations are accompanied by telomere elongation, indicating a role for Suv4-20h HMTases in telomere length control. Finally, cells lacking either the Suv4-20h or Suv39h HMTases show increased frequencies of telomere recombination in the absence of changes in subtelomeric DNA methylation. These results demonstrate the importance of chromatin architecture in the maintenance of telomere length homeostasis and reveal a novel role for histone lysine methylation in controlling telomere recombination.  相似文献   

9.
Sugar beet (Beta vulgaris) chromosomes consist of large heterochromatic blocks in pericentromeric, centromeric, and intercalary regions comprised of two different highly abundant DNA satellite families. To investigate DNA methylation at single base resolution at heterochromatic regions, we applied a method for strand-specific bisulfite sequencing of more than 1,000 satellite monomers followed by statistical analyses. As a result, we uncovered diversity in the distribution of different methylation patterns in both satellite families. Heavily methylated CG and CHG (H=A, T, or C) sites occur more frequently in intercalary heterochromatin, while CHH sites, with the exception of CAA, are only sparsely methylated, in both intercalary and pericentromeric/centromeric heterochromatin. We show that the difference in DNA methylation intensity is correlated to unequal distribution of heterochromatic histone H3 methylation marks. While clusters of H3K9me2 were absent from pericentromeric heterochromatin and restricted only to intercalary heterochromatic regions, H3K9me1 and H3K27me1 were observed in all types of heterochromatin. By sequencing of a small RNA library consisting of 6.76 million small RNAs, we identified small interfering RNAs (siRNAs) of 24 nucleotides in size which originated from both strands of the satellite DNAs. We hypothesize an involvement of these siRNAs in the regulation of DNA and histone methylation for maintaining heterochromatin.  相似文献   

10.
The diploid chromosome number of the Chinese raccoon dog varies from 54 (no B chromosomes) to 58 (4 B chromosomes). The B chromosomes are totally heterochromatic. An electron microscopic study was made of the synaptonemal complexes (SC) in spermatocytes of these animals. The SC karyotype consists of 27 regular chromosome pairs (autosomes and the sex chromosomes) plus the B chromosomes. The Bs pair effectively with one another at pachytene, but the SC axes of the B chromosomes are much denser than those of the A chromosomes. Depending on the number of Bs, both bivalents and multivalents have been observed. When three B chromosomes are present in a cell, parallel alignment of all three SCs can be seen. Formation of multivalents indicates high homology among these supernumerary heterochromatic chromosomes. Fusiform bulges are found along unpaired regions of all chromosomes which are particularly pronounced in diplotene.  相似文献   

11.
12.
The chromodomain (CD) of the Drosophila Polycomb protein exhibits preferential binding affinity for histone H3 when trimethylated at lysine 27. Here we have investigated the five mouse Polycomb homologs known as Cbx2, Cbx4, Cbx6, Cbx7, and Cbx8. Despite a high degree of conservation, the Cbx chromodomains display significant differences in binding preferences. Not all CDs bind preferentially to K27me3; rather, some display affinity towards both histone H3 trimethylated at K9 and H3K27me3, and one CD prefers K9me3. Cbx7, in particular, displays strong affinity for both H3K9me3 and H3K27me3 and is developmentally regulated in its association with chromatin. Cbx7 associates with facultative heterochromatin and, more specifically, is enriched on the inactive X chromosome. Finally, we find that, in vitro, the chromodomain of Cbx7 can bind RNA and that, in vivo, the interaction of Cbx7 with chromatin, and the inactive X chromosome in particular, depends partly on its association with RNA. We propose that the capacity of this mouse Polycomb homolog to associate with the inactive X chromosome, or any other region of chromatin, depends not only on its chromodomain but also on the combination of histone modifications and RNA molecules present at its target sites.  相似文献   

13.
Posttranslational histone modifications and histone variants form a unique epigenetic landscape on mammalian chromosomes where the principal epigenetic heterochromatin markers, trimethylated histone H3(K9) and the histone H2A.Z, are inversely localized in relation to each other. Trimethylated H3(K9) marks pericentromeric constitutive heterochromatin and the male Y chromosome, while H2A.Z is dramatically reduced at these chromosomal locations. Inactivation of a lysosomal and nuclear protease, cathepsin L, causes a global redistribution of epigenetic markers. In cathepsin L knockout cells, the levels of trimethylated H3(K9) decrease dramatically, concomitant with its relocation away from heterochromatin, and H2A.Z becomes enriched at pericentromeric heterochromatin and the Y chromosome. This change is also associated with global relocation of heterochromatin protein HP1 and histone H3 methyltransferase Suv39h1 away from constitutive heterochromatin; however, it does not affect DNA methylation or chromosome segregation, phenotypes commonly associated with impaired histone H3(K9) methylation. Therefore, the key constitutive heterochromatin determinants can dynamically redistribute depending on physiological context but still maintain the essential function(s) of chromosomes. Thus, our data show that cathepsin L stabilizes epigenetic heterochromatin markers on pericentromeric heterochromatin and the Y chromosome through a novel mechanism that does not involve DNA methylation or affect heterochromatin structure and operates on both somatic and sex chromosomes.  相似文献   

14.
15.
16.
Fungal secondary metabolites are important bioactive compounds but the conditions leading to expression of most of the putative secondary metabolism (SM) genes predicted by fungal genomics are unknown. Here we describe a novel mechanism involved in SM‐gene regulation based on the finding that, in Aspergillus nidulans, mutants lacking components involved in heterochromatin formation show de‐repression of genes involved in biosynthesis of sterigmatocystin (ST), penicillin and terrequinone A. During the active growth phase, the silent ST gene cluster is marked by histone H3 lysine 9 trimethylation and contains high levels of the heterochromatin protein‐1 (HepA). Upon growth arrest and activation of SM, HepA and trimethylated H3K9 levels decrease concomitantly with increasing levels of acetylated histone H3. SM‐specific chromatin modifications are restricted to genes located inside the ST cluster, and constitutive heterochromatic marks persist at loci immediately outside the cluster. LaeA, a global activator of SM clusters in fungi, counteracts the establishment of heterochromatic marks. Thus, one level of regulation of the A. nidulans ST cluster employs epigenetic control by H3K9 methylation and HepA binding to establish a repressive chromatin structure and LaeA is involved in reversal of this heterochromatic signature inside the cluster, but not in that of flanking genes.  相似文献   

17.
The centromeric region of Costus spiralis is characteristically composed of a small heterochromatic DAPI(+) band flanked by a discrete decondensed region. High concentrations of serine 10 of histone H3 (H3S10ph) around the DAPI(+) band in pachytene chromosomes and the location of this heterochromatin at the chromosome region directed towards the poles during metaphase-anaphase I confirm its integration into the centromeric region. Antibodies against both typical components of euchromatin histones (histone H4 acetylated at lysine 5 (H4K5ac) and histone H3 dimethylated at lysine 4 (H3K4me2)) and heterochromatin (dimethylated lysine 9 of H3 (H3K9me2) and anti-5-methylcytosine (5-mC)) were used to characterize the centromeric chromatin of this species during meiosis. In pachytene chromosomes, the decondensed terminal euchromatin of the chromosome arms were seen to be richer in H4K5ac and H3K4me2 histones, while the more condensed proximal region was relatively stronger labeled with anti-H3K9me2 and anti-5-methylcytosine (5-mC). The centromeric region itself, including the DAPI(+) band, was poor in all of these chromatin modifications, but it was highly enriched in H4K5ac at pachytene. Before and after this stage, the centromeric region was poorly labeled with anti-H4K5ac. Hypomethylation and hyperacetylation of any kind of heterochromatin has rarely been reported, and it may be related to the dominant role of the centromere domain over the heterochromatin repeats.  相似文献   

18.
JMJD2A is a JmjC histone demethylase (HDM) that catalyzes the demethylation of di- and trimethylated Lys9 and Lys36 in histone H3 (H3K9me2/3 and H3K36me2/3). Here we present the crystal structures of the JMJD2A catalytic domain in complex with H3K9me3, H3K36me2 and H3K36me3 peptides. The structures reveal that histone substrates are recognized through a network of backbone hydrogen bonds and hydrophobic interactions that deposit the trimethyllysine into the active site. The trimethylated epsilon-ammonium cation is coordinated within a methylammonium-binding pocket through carbon-oxygen (CH...O) hydrogen bonds that position one of the zeta-methyl groups adjacent to the Fe(II) center for hydroxylation and demethylation. Mutations of the residues comprising this pocket abrogate demethylation by JMJD2A, with the exception of an S288A substitution, which augments activity, particularly toward H3K9me2. We propose that this residue modulates the methylation-state specificities of JMJD2 enzymes and other trimethyllysine-specific JmjC HDMs.  相似文献   

19.
A role for the RNA interference (RNAi) pathway in the establishment of heterochromatin is now well accepted for various organisms. Less is known about its relevance and precise role in mammalian cells. We previously showed that tandem insertion of a 1,000-copy inducible transgene into the genome of baby hamster kidney (BHK) cells initiated the formation of an extremely condensed chromatin locus. Here, we characterized the inactive transgenic locus as heterochromatin, since it was associated with heterochromatin protein 1 (HP1), histone H3 trimethylated at lysine 9, and cytosine methylation in CpG dinucleotides. Northern blot analysis did not detect any transgene-derived small RNAs. RNAi-mediated Dicer knockdown did not disrupt the heterochromatic transgenic locus or up-regulate transgene expression. Moreover, neither Dicer knockdown nor overexpression of transgene-directed small interfering RNAs altered the bidirectional transition of the transgenic locus between the heterochromatic and euchromatic states. Interestingly, tethering of HP1 to the transgenic locus effectively induced transgene silencing and chromatin condensation in a Dicer-independent manner, suggesting a role for HP1 in maintaining the heterochromatic locus. Our results suggest that the RNAi pathway is not required for the assembly and maintenance of noncentromeric heterochromatin initiated by tandem transgene repeats in mammalian cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号