首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The pullulanase gene (pul) of Klebsiella aerogenes was cloned into a pBR322 vector in Escherichia coli. Deletion analysis of the recombinant plasmid showed that the pul coding sequence, probably with the regulator gene, was located entirely within a 4.2-kilobase segment derived from the chromosomal DNA of K. aerogenes. E. coli cells carrying the recombinant plasmids produced about three- to sevenfold more pullulanase than did the wild-type strain of K. aerogenes W70. When the cloned cells of E. coli were grown with pullulan or maltose, most pullulanase was produced intracellularly, whereas K. aerogenes produced pullulanase extracellularly. Transfer of the plasmid containing the pul gene into K. aerogenes W70 resulted in about a 20- to 40-fold increase in total production of pullulanase, and the intracellular enzyme level was about 100- to 150-fold higher than that of the parent strain W70. The high level of pullulanase activity in K. aerogenes cells carrying the recombinant plasmid was maintained for at least 2 weeks.  相似文献   

3.
The pullulanase gene (pul) of Klebsiella aerogenes was cloned into a pBR322 vector in Escherichia coli. Deletion analysis of the recombinant plasmid showed that the pul coding sequence, probably with the regulator gene, was located entirely within a 4.2-kilobase segment derived from the chromosomal DNA of K. aerogenes. E. coli cells carrying the recombinant plasmids produced about three- to sevenfold more pullulanase than did the wild-type strain of K. aerogenes W70. When the cloned cells of E. coli were grown with pullulan or maltose, most pullulanase was produced intracellularly, whereas K. aerogenes produced pullulanase extracellularly. Transfer of the plasmid containing the pul gene into K. aerogenes W70 resulted in about a 20- to 40-fold increase in total production of pullulanase, and the intracellular enzyme level was about 100- to 150-fold higher than that of the parent strain W70. The high level of pullulanase activity in K. aerogenes cells carrying the recombinant plasmid was maintained for at least 2 weeks.  相似文献   

4.
Genetic control of arylsulfatase synthesis in Klebsiella aerogenes.   总被引:13,自引:10,他引:3       下载免费PDF全文
It was shown that at least four genes are specifically responsible for arylsulfatase synthesis in Klebsiella aerogenes. Mutations at chromosome site atsA result in enzymatically inactive arylsulfatase. Mutants showing constitutive synthesis of arylsulfatase (atsR) were isolated by using inorganic sulfate or cysteine as the sulfur source. Another mutation in which repression of arylsulfatase by inorganic sulfate or cysteine could not be relieved by tyramine was determined by genetic analysis to be on the tyramine oxidase gene (tyn). This site was distinguished from the atsC mutation site, which is probably concerned with the action or synthesis of corepressors of arylsulfatase synthesis. Genetic analysis with transducing phage PW52 showed that the order of mutation sites was atsC-atsR-atsA-tynA-tynB. On the basis of these results and previous physiological findings, we propose a new model for regulation of arylsulfatase synthesis.  相似文献   

5.
The genes for arylsulfatase (atsA) and tyramine oxidase (tynA) have been mapped in Klebsiella aerogenes by P1 transduction. They are linked to gdhD and trp in the order atsA-tynA-gdhD-trp-pyrF. Complementation analysis using F' episomes from Escherichia coli suggested an analogous location of these genes in E. coli, although arylsulfatase activity was not detected in E. coli. P1 phage and F' episomes were used to create intergeneric hybrid strains of enteric bacteria by transfer of the ats and tyn genes between K. aerogenes, E. coli, and Salmonella typhimurium. Intergeneric transduction of the tynK gene from K. aerogenes to an E. coli restrictionless strain was one to two orders less frequent than that of the leuK gene. The tyramine oxidase of E. coli and S. typhimurium in regulatory activity resemble very closely the enzyme of K. aerogenes. The atsE gene from E. coli was expressed, and latent arylsulfatase protein was formed in K. aerogenes and S typhimurium. The results of tyramine oxidase and arylsulfatase synthesis in intergeneric hybrids of enteric bacteria suggest that the system for regulation of enzyme synthesis is conserved more than the structure or function of enzyme protein during evolution.  相似文献   

6.
7.
T T Myoda  S V Lowther  V L Funanage  F E Young 《Gene》1984,29(1-2):135-143
The structural gene for dihydrofolate reductase (dfrA) from the Bacillus subtilis 168 chromosome has been cloned, along with the thyB gene, on a 4.5-kb insert contained on chimeric plasmid pER1. The presence of the dfrA gene on pER1 was demonstrated by showing that: (i) transformation of Escherichia coli strains RUE10(Thy-) and RUE11(Thy+) with pER1 resulted in a 60 to 130-fold increase in dihydrofolate reductase (DFRase) activity with a turnover number characteristic of that of B. subtilis and (ii) pER1-mediated transformation of trimethoprim-resistant E. coli strain D05, which overproduced a DFRase with a decreased affinity for trimethoprim, resulted in a 41-fold increase in DFRase activity with an affinity for trimethoprim similar to that of the B. subtilis enzyme. The dfrA gene was mapped to the 200 degrees region of the B. subtilis chromosome, and the gene order was established as thyB dfrA ilvA. Furthermore, the dfrA gene was shown to be linked closely (95-99% cotransformation) to the thyB gene.  相似文献   

8.
9.
10.
R W Davies  A M Gronenborn 《Gene》1982,17(2):229-233
The Lactobacillus casei gene for dihydrofolate reductase has been cloned in Escherichia coli using the multicopy vector pBR322. A restriction map of the cloned DNA has been prepared. The cloned DNA directs the synthesis of L. casei dihydrofolate reductase in E. coli and confers trimethoprim and methotrexate resistance.  相似文献   

11.
12.
The trimethoprim-resistant dihydrofolate reductase associated with the R plasmid R388 was isolated from strains that over-produce the enzyme. It was purified to apparent homogeneity by affinity chromatography and two consecutive gel filtration steps under native and denaturing conditions. The purified enzyme is composed of four identical subunits with molecular weights of 8300. A 1100 bp long DNA segment which confers resistance to trimethoprim was sequenced. The structural gene was identified on the plasmid DNA by comparing the amino acid composition of the deduced proteins with that of the purified enzyme. The gene is 234 bp long and codes for 78 amino acids. No homology can be found between the deduced amino acid sequence of the R388 dihydrofolate reductase and those of other prokaryotic or eukaryotic dihydrofolate reductases. However, it differs in only 17 positions from the enzyme associated with the trimethoprim-resistance plasmid R67.  相似文献   

13.
14.
Natural competence ofStreptococcus pneumoniae was used to locate and enrich DNA restriction fragments, biologically active for transformation of thymidine-deficient to thymidine-proficient cells. Mutations in the dihydrofolate reductase gene are accompanied by resistance to the drug trimethoprim (Tp). A 6.5-kb region of the pneumococcal chromosome encompassing the dihydrofolate reductase gene has been cloned in plasmid pLS1.Escherichia coli mutants, resistant to Tp, became fully sensitive to the drug when they harbored the recombinant plasmid. The pneumococcaldfrA mutation has been mapped within a 500-bp DNA region.  相似文献   

15.
Cloning chromosomal lac genes of Klebsiella pneumoniae   总被引:4,自引:0,他引:4  
C MacDonald  M Riley 《Gene》1983,24(2-3):341-345
The chromosomal gene for beta-galactosidase from Klebsiella pneumoniae strain T17R1 and associated regulatory genes have been cloned as a 5-kb HindIII fragment in the pBR322 plasmid vector. The beta-galactoside permease gene is not present in a functional form in the 5-kb fragment. The K. pneumoniae genes are expressed in an Escherichia coli host. The synthesis of beta-galactosidase is inducible by isopropyl-beta-D-galactosidase (IPTG) and is sensitive to catabolite repression. There appears to be greater homology between the K. pneumoniae and E. coli structural genes for beta-galactosidase than there is between the respective repressor genes.  相似文献   

16.
In Escherichia coli, dihydrofolate reductase is required for both the de novo synthesis of tetrahydrofolate and the recycling of dihydrofolate produced during the synthesis of thymidylate. The coding region of the dihydrofolate reductase gene, folA, was replaced with a kanamycin resistance determinant. Unlike earlier deletions, this mutation did not disrupt flanking genes. When the mutation was transferred into a wild-type strain and a thymidine-(thy) requiring strain, the resulting strains were viable but slow growing on rich medium. Both synthesized less folate than their parents, as judged by the incorporation of radioactive para-aminobenzoic acid. The derivative of the wild-type strain did not grow on any defined minimal media tested. In contrast, the derivative of the thy-requiring strain grew slowly on minimal medium with thy but exhibited auxotrophies on some combinations of supplements. These results suggest that when folates are limited, they can be distributed appropriately to folate-dependent biosynthetic reactions only under some conditions.  相似文献   

17.
Dihydrofolate reductase (5,6,7,8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3) was purified from Escherichia coli strains that carried derivatives of the multicopy recombinant plasmid, pJFM8. The results of enzyme kinetic and two-dimensional gel electrophoresis experiments showed that the cloned enzyme is indistinguishable from the chromosomal enzyme. Therefore it can be concluded that these strains are ideal for use as a source of enzyme for further studies on the biochemistry and regulation of this important enzyme. The plasmid derivatives were constructed by recloning experiments that utilized several restriction endonucleases. From the analysis both of these plasmids and the purified dihydrofolate reductase enzymes it was possible to deduce the location and orientation of the dihydrofolate reductase structural gene on the parent plasmid, pJFM8.  相似文献   

18.
M E Fling  J Kopf  C A Richards 《Gene》1988,63(2):165-174
The nucleotide sequence of a DNA fragment that contained the Saccharomyces cerevisiae gene DFR coding for dihydrofolate reductase (DHFR) was determined. The DHFR was encoded by a 633-bp open reading frame, which specified an Mr24264 protein. The polypeptide was significantly related to the DHFRs of chicken liver and Escherichia coli. The yeast enzyme shared 60 amino acid (aa) residues with the avian enzyme and 51 aa residues with the bacterial enzyme. DHFR was overproduced about 40-fold in S. cerevisiae when the cloned gene was present in the vector YEp24. As isolated from the Saccharomyces library, the DFR gene was not expressed in E. coli. When the gene was present on a 1.8-kb BamHI-SalI fragment subcloned into the E. coli vector, pUC18, weak expression in E. coli was observed.  相似文献   

19.
Dihydrofolate reductase (the folA gene product) catalyzes the synthesis of tetrahydrofolate, a key methyl donor in many biosynthetic pathways. Loss of folA had been thought to be lethal to wild-type (thyA+) Escherichia coli. Viable folA-null derivatives of thyA+ E. coli were obtained, however, by recombining a folA deletion linked to a Kanr selectable marker into a lambda folA+ phage and using this phage to transduce cells to kanamycin resistance. folA-null strains were slow growing, formed small colonies, and were auxotrophic for thymidine, adenine, methionine, glycine, and pantothenate.  相似文献   

20.
The dihydrofolate reductase structural gene, folA, has been cloned into the multicopy vector pBR322 following the gene's enrichment by bacteriophage Mu-mediated transposition. Strains carrying the resultant plasmid, pJFMS, produce 25 to 30 times more dihydrofolate reductase than control strains. Consequently they are resistant to trimethoprim, an inhibitor of this enzyme. This elevation in enzyme production is due to an increase in the number of folA gene copies per cell. The higher yield of dihydrofolate reductase obtained will be extremely useful for purifying and characterising this trimethoprim-sensitive chromosomally derived enzyme. The plasmid will also be invaluable for studying the structure, function and regulation of dihydrofolate reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号