首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The three-dimensional structure of porcine pancreatic PLA2 (PLA2), present in a 40 kDa ternary complex with micelles and a competitive inhibitor, has been determined using multidimensional heteronuclear NMR spectroscopy. The structure of the protein (124 residues) is based on 1854 constraints, comprising 1792 distance and 62 torsion angle constraints. A total of 18 structures was calculated using a combined approach of distance geometry and restrained molecular dynamics. The atomic rms distribution about the mean coordinate positions for residues 1–62 and 72–124 is 0.75±0.09 Å for the backbone atoms and 1.14±0.10 Å for all atoms. The rms difference between the averaged minimized NMR structures of the free PLA2 and PLA2 in the ternary complex is 3.5 Å for the backbone atoms and 4.0 Å for all atoms. Large differences occur for the calcium-binding loop and the surface loop from residues 62 through 72. The most important difference is found for the first three residues of the N-terminal -helix. Whereas free in solution Ala1, Leu2 and Trp3 are disordered, with the -amino group of Ala1 pointing out into the solvent, in the ternary complex these residues have an -helical conformation with the -amino group buried inside the protein. As a consequence, the important conserved hydrogen bonding network which is also seen in the crystal structures is present only in the ternary complex, but not in free PLA2. Thus, the NMR structure of the N-terminal region (as well as the calcium-binding loop and the surface loop) of PLA2 in the ternary complex resembles that of the crystal structure. Comparison of the NMR structures of the free enzyme and the enzyme in the ternary complex indicates that conformational changes play a role in the interfacial activation of PLA2.  相似文献   

2.
The interaction between porcine pancreatic phospholipase A2 and low-molecular fragments of its substrate -- lecithine was studied using gel-diffusion of the enzyme in lecithin-agarose plates. When the inhibitor was added, a decrease in the magnitude of cleared areas (l/l0) around the depots filled with enzyme solution was observed. A marked decrease in l/l0 in the presence of alpha- and beta-glycerophosphates supported the statement that the cathionic center is a part of the enzyme active site SII. The potent inhibition of phospholipase activity in the presence of phosphocholine, choline, acetylcholine, thiocholine and acylthiocholines suggests the existence of an anionic center SIII in the active site. This suggestion is supported by intensive inhibition of phospholipase activity by certain, aliphatic amines. It was shown that the center is spaced in the direction of the cathionic center. SII. The main contribution to the binding of the cathionic lecithin part ("head") with the anionic center SIII is probably provided by the ion-ionic interactions.  相似文献   

3.
4.
The unique methionine-15 residue located at the N-terminal site of iso- or beta-phospholipase A2 from porcine pancrease has been specifically carboxymethylated with iodoacetic acid. The modification results in a complete inactivation of the enzymatic activity toward micellar and monomeric substrates. Spectroscopic measurements reveled that the carboxymethylated protein still binds Ca2+ and monomeric substrates with comparable affinities as the native enzyeme. The active site histidine-54 residue in the modified enzyme shows a reactivity toward the active site-directed irreversible inhibitor p-bromophenacylbromide which is identical to that of the native enzyme. The alkylated protein, however, has lost its ability to bind to lipid-water interfaces. Although circular dichroic spectra of the carboxymethylated enzyme display some changes in the tertiary structure as compared with the native enzyme, the alpha-helix content remains rather constant. It is concluded that carboxymethylation of methionine-15 destroys the interface recognition site but has only limited influence on the active site of the molecule. Therefore, it seems that methionine-15 is not involved in the catalytic events but that this residue is part of the interface recognition site which embraces the N-terminal hydrophobic part of the enzyme: Ala-Leu-Trp-Gln-Phe-Arg-Ser-Met.  相似文献   

5.
Two-dimensional NMR studies were performed on the complexes of porcine pancreatic phospholipase A2, bound to a micellar lipid-water interface of fully deuterated dodecylphosphocholine, with competitive inhibitors derived from the following general structure: [formula: see text] X and Y are alkyl chains with various 'reporter groups'. The interactions between the inhibitor and the enzyme were localized by comparison of 2-D nuclear Overhauser effect spectra using protonated and selectively deuterated inhibitors, and inhibitors with groups having easily identifiable chemical shifts. These experiments led us to the following conclusions for the phospholipase A2/inhibitor/micelle complex: i) the His48 C2 ring proton is in close proximity to both the amide proton and the methylene protons at the sn-1 position of the glycerol skeleton of the inhibitor, ii) the acyl chain of the inhibitor at the sn-2 position makes hydrophobic contacts near Phe5, Ile9, Phe22 and Phe106; iii) no interactions between the acyl chain at the sn-1 position and the protein could be identified. Comparison of our results on the enzyme/inhibitor/micelle ternary complex with the crystal structure of the enzyme-inhibitor complex shows that the mode of inhibitor binding is similar. However, in several cases we found indications that the hydrophobic chains of the inhibitors can have multiple conformations.  相似文献   

6.
The thioesterase activity of porcine pancreatic phospholipase A2 has been investigated with non-phospholipid substrates. The acyl-CoA hydrolase activity towards acyl-CoA derivatives is specific for long chain fatty acids (14 C, 16 C) but is unable to hydrolyze short chain acyl-CoA compounds (below 8 C). The same enzyme also shows protein deacylase activity liberating [3H]palmitic acid from [3H]palmitoyl-acyl carrier protein.  相似文献   

7.
Pancreatic phospholipase A2 (PLA2)-catalyzed hydrolysis of egg yolk phosphatidylcholine (PC) in mixed PC-cholate systems depends upon composition, structure, and size of the mixed aggregates. The hydrolysis of PC-cholate-mixed micelles made of an equal number of PC and cholate molecules is consistent with a Km of about 1 mM and a turnover number of about 120 s-1. Increasing the cholate/PC ratio in the micelles results in a decreased initial velocity. Hydrolysis of cholate-containing unilamellar vesicles is very sensitive to the ratio of cholate to PC in the vesicles. The hydrolysis of vesicles with an effective cholate/PC ratio greater than 0.27 is similar to that of the mixed micelles. The time course of hydrolysis of vesicles with lower effective ratios is similar to that exhibited by pure dipalmitoyl-phosphatidylcholine (DPPC) large unilamellar vesicles in the thermotropic phase transition region. In the latter two cases, the rate of hydrolysis increases with time until substrate depletion becomes significant. The reaction can be divided phenomenologically into two phases: a latency phase where the amount of product formed is a square function of time (P(t) = At2) and a phase distinguished by a sudden increase in activity. The parameter A, which describes the activation rate of the enzyme during the initial phase in a quantitative fashion, increases with increasing [PLA2], decreasing [PC], decreasing vesicle size, and increasing relative cholate content of the vesicles. The effect of [PLA2] and [PC] on the hydrolysis reaction is similar to that found with pure DPPC unilamellar vesicles in their thermotropic phase transition region. The effect of cholate on the hydrolysis reaction is similar to that of temperature variation within the phase transition of temperature variation within the phase transition of DPPC. These results are consistent with our previously proposed model, which postulates that activation of PLA2 involves dimerization of the enzyme on the substrate surface and that the rate of activation is directly proportional to the magnitude of lipid structural fluctuations. It is suggested that large structural fluctuations, which exist in the pure lipid system in the phase transition range, are introduced into liquid crystalline vesicles by the presence of cholate and thus promote activation of the enzyme.  相似文献   

8.
The hydrolysis of small unilamellar vesicles made of dipalmitoylphosphatidylcoline by pancreatic phospholipase A2 has been studied under various conditions of temperature and enzyme and substrate concentration using the following three different experimental protocols. When the enzyme was added to the substrate vesicles after being separately adjusted to the temperature of the experiments hydrolysis occurred instantaneously only in the temperature range where the lipid is known to exist in its gel phase, while above the transition range no hydrolysis occurred. Within the transition range, the time course of hydrolysis was characterized by initial very slow rate of hydrolysis (latency phase) followed by an abrupt increase in the rate after a time tau, which is a complex function of temperature and enzyme to substrate ratio. When an enzyme-substrate mixture was first preincubated below Tm and then temperature jumped to a temperature above or within the transition range, the latency phase was markedly shortened. When the temperature jump was to the transition range, this effect is observed even if Ca2+ is absent in the preincubation mixture. However, instantaneous hydrolysis was observed upon temperature jumping the mixture to a temperature high above Tm only if Ca2+ was present in the preincubation medium. In temperature-scanning experiments, hydrolysis was followed while changing the temperature of the enzyme-substrate mixture continuously. Heating an enzyme-substrate mixture from room temperature resulted in an abrupt onset of hydrolysis when the transition range was approached. These results lead us to conclude that two distinctly different steps precede rapid hydrolysis of dipalmitoylphosphatidylcholine small unilamellar vesicles by pancreatic phospholipase A2: a Ca2+-independent binding of the enzyme to the substrate vesicles, which for chemically pure bilayers occurs best in the gel phase. This step is followed by a Ca2+-dependent activation of the initially formed enzyme-substrate complex. The latter step only occurs under conditions where the bilayer possesses packing irregularities and probably involves a reorganization of the enzyme-substrate complex. At least one of these two steps appears to involve enzyme-enzyme interaction.  相似文献   

9.
The interaction between dipalmitoylphosphatidylcholine large unilamellar vesicles and porcine pancreatic phospholipase A2 has been studied under a variety of conditions. It was found that the presence of large unilamellar vesicles inhibits the hydrolysis of small unilamellar vesicles at room temperature, and reaction calorimetric experiments showed that protein-lipid interactions in the absence of Ca2+ occur in the gel state with a stoichiometry of about 40 phospho-lipid molecules/protein-binding site. However, hydrolysis can be induced in the gel state under conditions of osmotic shock. On the other hand, hydrolysis is usually observed within the lipid transition temperature range, but then it occurs only after a latency phase during which the hydrolysis is very slow. The duration of this latency phase reaches a minimum near the phase transition temperature. However, if the enzyme-substrate mixture is heated from low temperatures (continuously or by a temperature jump) to a temperature within the phase transition region, hydrolysis occurs instantaneously. These results are in accordance with the conclusions of the preceding paper (Menashe, M., Romero, G., Biltonen, R. L., and Lichtenberg, D. (1986) J. Biol. Chem. 261, 5328-5333) that effective binding of the enzyme to lipid vesicles occurs relatively rapidly in the gel state and that activation of the enzyme-substrate complex requires the existence of structural irregularities in the lipid bilayer. Although hydrolysis products may have a pronounced effect on the time course of the reaction in the transition range, instantaneous hydrolysis can be induced in the phase transition region in the absence of reaction products by appropriate manipulation of the experimental conditions during which no reaction products are produced. Thus reaction products are not essential for activation of porcine pancreatic phospholipase A2. Furthermore, it is shown that the fraction of lipid hydrolyzed during the latency period is a function of the initial substrate concentration in a manner inconsistent with the proposition that the accumulation of a constant critical fraction of reaction products is the basis for activation. Comparison of the results of this study with those of the preceding paper strongly support the previously proposed reaction scheme.  相似文献   

10.
Porcine pancreatic phospholipase A2 was purified from commercial pancreatin by a method involving heat denaturation, trichloroacetic acid precipitation, and DEAE-cellulose chromatography. Assaying the eluate of the chromatography step by a new titrimetric method using vegetable lecithin-albumin emulsion as the substrate, several species of phospholipase A were found. Some of these went undetected when the conventional egg yolk emulsion assay was used. Two phospholipases A2 were isolated in a homogeneous form and shown to have similar chemical and physical properties. Catalytic specificity of the two enzymes differs remarkably toward lecithins in different emulsified states.  相似文献   

11.
The binding of Ca2+ to porcine pancreatic phospholipase A2 was studied by batch microcalorimetry. Enthalpies of binding at 25 degrees C were determined as a function of Ca2+ concentration in buffered solutions at pH 8.0 using both the Tris-HCl and Hepes-NaOH buffer systems. The calorimetric results indicate that protons are released on calcium binding and that in addition to the binding of the active-site calcium, there appears to be weak binding of a second Ca2+. Results from potentiometric titrations indicate that this proton release on binding Ca2+ arises from a change in pK of a histidine(s) functional group. The thermodynamic functions delta G0, delta H0 and delta S0 for calcium binding to phospholipase A2 have been determined. These results are compared with literature data for Ca2+ complex formation with some small molecules and also the protein troponin-C.  相似文献   

12.
Pancreatic phospholipase A(2) (PLA(2)) plays an important role in cellular homeostasis as well as in the process of carcinogenesis. Effects of metallo-drugs used as chemotherapeutics on the activity of this enzyme are unknown. In this work, the interaction between porcine pancreatic PLA(2) and two selected transition metal complexes--tetrachloro(bipyridine) platinum(IV) ([PtCl(4)(bipy)]) and dichloro (bipyridine) ruthenium(III)chloride ([RuCl(2)(bipy)(2)]Cl)--was studied. Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) and fluorescence spectroscopy have been used to analyse the enzyme activity in the absence and presence of metal complexes and to verify potential binding of these drugs to the enzyme. The tested metal complexes decreased the activity of phospholipase A(2) in an uncompetitive inhibition mode. A binding of the ruthenium complex near the active site of the enzyme could be evidenced and possible modes of interaction are discussed.  相似文献   

13.
Bovine pancreatic phospholipase A2 covalently inhibited by p-bromo-phenacyl-bromide was crystallized from 50% (v/v) 2-methyl-2,4-pentanediol. The space group was P3(1)21 with cell dimensions a = b = 46.73 A and c = 102.5 A (1 A = 0.1 nm). Diffraction data were collected by oscillation photography from one single crystal of dimensions 0.2 mm x 0.2 mm x 0.2 mm. The crystal structure was determined to a resolution of 2.5 A by crystallographic refinement of a starting model, which consisted of native bovine pancreatic phospholipase A2 positioned and oriented in the P3(1)21 cell as in the bovine pro-phospholipase A2. The crystallographic R-factor decreased from 0.378 to 0.197 after 70 refinement cycles. For the greater part the three-dimensional structure was very similar to that of native phospholipase. The inhibitor group shows up clearly. However, as in solution, there is no calcium ion bound any more in the active site, and this causes a significant conformational change in the loop from residue 59 to 73. This loop is remote from the calcium binding site. Interestingly, this is the same loop that also shows different conformations in other phospholipase A2 molecules. The inhibitor molecule has hydrophobic interactions with Phe5 and Cys45. Rational design of specific and potent inhibitors of phospholipase A2 catalysis is discussed on the basis of the present three-dimensional structure.  相似文献   

14.
15.
The kinetic properties of porcine pancreatic phospholipase A2 were studied on a series of n-acylglycollecithins and n-acylglycol sulfates containing acyloxy or acylthio ester bonds at substrate concentrations below and above the critical micelle concentration. These single-chain detergents containing a primary (thio) ester bond are hydrolyzed rather slowly by the pancreatic enzyme, and maximal activity was found always for the n-octanoyl derivatives. The acylthio ester group is split 4-5 times faster than the corresponding acyloxy ester function. The kinetic behavior of the enzyme acting on zwitterionic glycollecithins or on anionic glycol sulfates is quite different and provides an explanation for the differences in pH optimum. Both for glycollecithins and for glycol sulfates, maximal enzyme activities are found in high molecular weight aggregates consisting of several enzyme molecules and detergent monomers. Their pathway of formation, however, is not the same.  相似文献   

16.
A number of isomeric diacylglycerophosphocholines and diacylglycero sulfates containing O-acyl and/or S-acyl ester bonds were investigated as substrates for porcine pancreatic phospholipase A2 and its zymogen. A comparison is made with the kinetic properties of the enzyme toward the corresponding glycol detergents previously described [van Oort, M. G., Dijkman, R., Hille, J. D. R., & de Haas, G. H. (1985) Biochemistry (preceding paper in this issue)]. Hydrolysis of the secondary ester bond in the 1,2-diacylglycero-3-type lipids proceeds much faster than the splitting of the primary ester function present in the isomeric 1,3-diacylglycerol and 1-acylglycol derivatives. In sharp contrast to the glycol detergents, the substitution of the cleavable oxygen ester by a thio ester bond in the glycerol lipids results in 5 times lower kcat values. At alkaline pH and above the critical micelle concentration, the anionic sulfates are much better substrates than the corresponding phosphocholine-containing detergents. At very low detergent concentrations, below the critical micelle concentration, the anionic sulfates induce protein aggregation such that phospholipase A2, as well as its zymogen, is present in high molecular weight complexes containing several protein molecules. In these aggregates, protein-protein and/or lipid-protein interactions strongly activate phospholipase but not the zymogen.  相似文献   

17.
A free N-terminal alpha-NH3+ group is absolutely required for full catalytic activity of phospholipase A2 on aggregated substrates. To elucidate how this alpha-NH3+ group triggers catalytic activity, we specifically transaminated this group in various pancreatic phospholipases A2. Porcine, porcine iso-, equine, human, ovine, and bovine phospholipases A2 all loose catalytic activity on micellar substrates due to the inability of the transaminated proteins to bind to neutral micellar substrate analogues, as was found for the zymogens. Loss of activity is pseudo first order, the rate constants being different for the enzymes studied. The transaminated phospholipases A2 have an intact active site, as catalytic activities on monomeric substrates are comparable to those of the respective zymogens. The X-ray structure of transaminated bovine phospholipase A2 at 2.1-A resolution shows that the N-terminal region and the sequence 63-72 in this protein are more flexible than in the native enzyme. Also, in this respect, the transaminated enzyme very much resembles the zymogen structure. In good agreement with this, it was found by photochemically induced dynamic nuclear polarization 1H NMR that aromatic resonances of Trp-3 and Tyr-69 are affected by transamination. In addition, fluorescence spectroscopy of the unique Trp-3 in transaminated bovine phospholipase A2 revealed a red shift of the emission maximum indicative of a more polar environment of Trp-3 in the transaminated phospholipase A2 as compared to the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Turkey pancreatic phospholipase (TPP) has been purified from delipidated pancreases. The purification included ammonium sulfate fractionation, acidic (pH 5) treatment, followed by sequencial column chromatographies on DEAE-cellulose, Sephadex G-75, and reverse phase high pressure liquid chromatography. The purified enzyme was found to be a monomeric protein with molecular mass of 14 kDa. The optimal activity was measured at pH 8 and 37 degrees C using egg yolk emulsion as substrate. Our results show that the enzyme (TPP) was not stable for 1 h at 60 degrees C, and that bile salt and Ca2+ were required for the expression of the purified enzyme. The sequence of the N-terminal amino acids of the purified enzyme shows a very close similarity between TPP and all other known pancreatic phospholipases.  相似文献   

19.
The porcine pancreatic phospholipase A2-catalyzed hydrolysis of the water-soluble chromogenic substrate 4-nitro-3-octanoyloxybenzoate shows an initial latency phase similar to the one observed in the hydrolysis of aggregated phospholipids by the same enzyme. We report here that during the latency phase the enzyme undergoes a slow, autocatalytic, substrate-level acylation whereby in a few of the catalytic events the scissile octanoyl group of the substrate, normally transferred to water, is transferred to the epsilon-amino group of lysine 56. The N epsilon 56-octanoylphospholipase shows a strong tendency to dimerize in solution and thus may be separated from the monomeric native enzyme by gel filtration. Octanoylation of Lys-56 activates the enzyme some 180-fold toward 4-nitro-3-octanoyloxybenzoate and more than 100-fold toward monolayers of 1,2-didecanoyl-sn-glycero-3-phosphocholine. Acylation also attends the enzymatic hydrolysis of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine with the incorporation of 1 eq of palmitate. Kinetic analysis of the early phase of reaction with 4-nitro-3-octanoyloxybenzoate shows that in this initial step the rate of activation is first order with respect to enzyme and substrate. A much more rapid, autocatalytic activation occurs in the later phases of the reaction where the activation of the enzyme is catalyzed by the activated enzyme itself. These findings with porcine pancreatic phospholipase A2, together with those relative to a snake venom enzyme monomer (Cho, W., Tomasselli, A. G., Heinrikson, R. L., and Kézdy, F. J. (1988) J. Biol. Chem. 263, 11237-11241), strongly support the proposal that interfacial activation of monomeric phospholipases is due to substrate-level autoacylation resulting in fully potentiated dimeric enzymes.  相似文献   

20.
Residue 31 of porcine pancreatic phospholipase A2 (PLA2) is located at the entrance to the active site. To study the role of residue 31 in PLA2, six mutant enzymes were produced by site-directed mutagenesis, replacing Leu by either Trp, Arg, Ala, Thr, Ser or Gly. Direct binding studies indicated a three to six times greater affinity of the Trp31 PLA2 for both monomeric and micellar substrate analogs, relative to the wild-type enzyme. The other five mutants possess an unchanged affinity for monomers of the product analog n-decylphosphocholine and for micelles of the diacyl substrate analog rac-1,2-dioctanoylamino-dideoxy-glycero-3-phosphocholine. The affinities for micelles of the monoacyl product analog n-hexadecylphosphocholine were decreased 9-20 times for these five mutants. Kinetic studies with monomeric substrates showed that the mutants have Vmax values which range between 15 and 70% relative to the wild-type enzyme. The Vmax values for micelles of the zwitterionic substrate 1,2-dioctanoyl-sn-glycero-3-phosphocholine were lowered 3-50 times. The Km values for the monomeric substrate and the Km values for the micellar substrate were hardly affected in the case of five of the six mutants, but were considerably decreased when Trp was present at position 31. The results of these investigations point to a versatile role for the residue at position 31: involvement in the binding and orientating of monomeric substrate (analogs), involvement in the binding of the enzyme to micellar substrate analogs and possibly involvement in shielding the active site from excess water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号