首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Woody shrubs in the genus Tamarix L. (Tamaricaceae) were introduced into western North America in the nineteenth century and have invaded riparian areas, acting as drivers of ecosystem change by altering fire cycles, soil chemistry, hydrology and native plant composition. The scope and severity of the invasions provided impetus for a classical weed biological control program using Diorhabda spp. (Coleoptera: Chrysomelidae). Since the first releases in 2001 Diorhabda spp. have moved into many of the areas dominated by Tamarix resulting in defoliations, canopy dieback, and in some locations substantial Tamarix mortality. Success of the program has been overshadowed by concern that Tamarix is used by a federally-listed bird sub-species, the southwestern willow flycatcher. The controversy has led to lawsuits, cancelled biological control research and release permits and to a negative perception of Tamarix biocontrol by some. Long term success is likely, but only with continued monitoring and riparian restoration will the program reach its full potential.  相似文献   

2.
Saltcedars are woody plants in the genus Tamarix L. (Caryophyllales: Tamaricaceae) and are native to Eurasia and Africa. Several species have become invasive in the Americas, Australia and South Africa. In Argentina there are four species of Tamarix distributed in arid, semi-arid and coastal areas of most provinces. The taxonomic isolation of Tamarix spp. in Argentina, their widespread distribution, negative impact to natural areas and lack of impact from existing natural enemies all indicate that Tamarix is an ideal candidate for classical biological control in Argentina. Biological control of Tamarix spp. has been rapid and highly successful in the USA after the introduction of four Diorhabda spp. (Coleoptera: Chrysomelidae). Biological control of Tamarix spp. in Argentina could be implemented easily, rapidly, and at a low cost by utilizing the information developed in the USA.  相似文献   

3.
Hybridization is regarded as a rapid mechanism for increasing genetic variation that can potentially enhance invasiveness. Tamarix hybrids appear to be the dominant genotypes in their invasions. Exotic Tamarix are declared invasive in South Africa and the exotic T. chinensis and T. ramosissima are known to hybridize between themselves, and with the indigenous T. usneoides. However, until now, it was not known which species or hybrid is the most prevalent in the invasion. With a biocontrol programme being considered as a way of suppressing the alien Tamarix populations, it is important to document the population genetic dynamics of all species in the region. This investigation sought to identify Tamarix species in southern Africa and their hybrids, describe their population structure, and reveal the geographic origin of the invasive species. To achieve this, nuclear Internal Transcribed Spacer (ITS) sequence data and the multilocus Amplified Fragment Length Polymorphisms (AFLPs) markers were used. Phylogenetic analysis and population genetic structure confirmed the presence of three species in South Africa (T. chinensis, T. ramosissima and T. usneoides) with their hybrids. The indigenous T. usneoides is clearly genetically distant from the alien species T. chinensis and T. ramosissima. Interestingly, the Tamarix infestation in South Africa is dominated (64.7 %) by hybrids between T. chinensis and T. ramosissima. The exotic species match their counterparts from their places of origin in Eurasia, as well as those forming part of the invasion in the US.  相似文献   

4.
Most species of Tamarix originate in Eurasia and at least five species have become invasive around the world, including South Africa. However, T. usneoides is indigenous to southern Africa, where the potential for biological control of the invasive species is being investigated. Recent research on the invasive species is reviewed here with particular reference to these South African biocontrol efforts. The successful biological control programme against invasive Tamarix in the USA, using several species of “Tamarisk beetle”, is being used as a guide for the South African research. The South African programme is complicated by firstly, the presence of the indigenous T. usneoides which raises the precision of host-specificity required, and secondly, the introduced and indigenous Tamarix have a high intrinsic value for phytoremediation of mine tailings dams in South Africa. The phylogenetic proximity of these Tamarix species to each other has contributed to this challenge, which has nevertheless been successfully addressed by molecular techniques used to separate the species. In addition, classical morphological techniques have been used to separate the Tamarisk beetles, so that now they can generally be matched to Tamarix tree species. Overall, it is concluded that given the broad knowledge now available on the ecology and identity of both the trees and their biocontrol agents, the prospects for successful biological control of Tamarix in South Africa are good.  相似文献   

5.
We investigated the effect of riboflavin on the biocontrol activity of Bacillus subtilis Tpb55 against Phytophthora nicotianae (Pn), which causes tobacco black shank. Riboflavin (0.2 mg ml?1) significantly improved the biocontrol activity of Tpb55 (2.0 × 108 cfu ml?1). Riboflavin (0.02–0.5 mg ml?1) alone could not significantly inhibit Pn growth. However, it enhanced the B. subtilis population, both in vitro and in tobacco roots and significantly increased the activity of defense enzymes, peroxidase, catalase, superoxide dismutase, and β-1,3-glucanase, in the roots of B. subtilis-treated tobacco seedlings. Our results indicate that riboflavin can stimulate the growth of B. subtilis Tpb55 and induce resistance to Pn in tobacco plants. These findings should boost the prospects for practical application of B. subtilis Tpb55 as a biocontrol agent against black shank of tobacco.  相似文献   

6.
Perennial C4 grasses, especially Miscanthus sinensis, are widely distributed in the degraded lands in South China. We transplanted native and exotic tree seedlings under the canopy of M. sinensis to assess the interaction (competition or facilitation) between dominant grass M. sinensis and tree seedlings. The results of growth, chlorophyll fluorescence, and ultrastructure showed that negative effects may be stronger in perennial dominant grass M. sinensis. Although M. sinensis buffered the air temperature, improved soil structure, and increased soil phosphorus content, these beneficial effects were outweighed by the detrimental effect, especially overshading. To ensure the establishment of target native species in M. sinensis communities in degraded lands of South China, restoration strategies should include removing aboveground vegetation, planting target species seedlings in openings to reduce the effects of canopy shading, and/or selecting competition-tolerant target species. Also, seedlings of exotic species used in restoration engineering cannot be directly planted under the canopy of M. sinensis.  相似文献   

7.
Coexistence of multiple species is a fundamental aspect of plant and forest ecology. Although spatial arrangement of leaves within crowns is an important determinant of light interception and productivity, shoot structure varies considerably among coexisting canopy species. We investigated the relative importance of structural traits in determining the light availability of leaves (I) and light interception efficiency at the current-year shoot level (LIECS; the total light interception of leaves divided by shoot biomass) at the top of crowns of 11 canopy species in a cool-temperate forest in Japan. In accordance with Corner’s rules, the total mass, stem mass, total mass of leaf laminae, individual leaf area, and stem cross-sectional area of current-year shoot were positively correlated with each other, and branching intensity (the number of current-year shoots per branch unit of 1-m length) was inversely correlated with these traits across species. In contrast, I was correlated not with these traits, but with leaf elevation angle (a L). Moreover, variation in LIECS across species was caused by variation in I (thus in a L). Thus, a L is a key parameter for the leaf light interception of canopy shoots in this cool-temperate forest. Differences in a L across species might be related to different physiological strategies that developed in the high light and water-limited environment of forest canopies. Small variation in the length of current-year shoots among species implies that variations in I and LIECS would be important for the coexistence of these canopy species.  相似文献   

8.
Maize is an economically important crop in northern Mexico. Different fungi cause ear and root rot in maize, including Fusarium verticillioides (Sacc.) Nirenberg. Crop management of this pathogen with chemical fungicides has been difficult. By contrast, the recent use of novel biocontrol strategies, such as seed bacterization with Bacillus cereus sensu lato strain B25, has been effective in field trials. These approaches are not without their problems, since insufficient formulation technology, between other factors, can limit success of biocontrol agents. In response to these drawbacks, we have developed a powder formulation based on Bacillus B25 spores and evaluated some of its characteristics, including shelf life and efficacy against F. verticillioides, in vitro and in maize plants. A talc-based powder formulation containing 1 × 109 c.f.u. g?1 was obtained and evaluated for seed adherence ability, seed germination effect, shelf life and antagonism against F. verticillioides in in vitro and in planta assays. Seed adherence of viable bacterial spores ranged from 1.0 to 1.41 × 107 c.f.u. g?1. Bacteria did not display negative effects on seed germination. Spore viability for the powder formulation slowly decreased over time, and was 53 % after 360 days of storage at room temperature. This formulation was capable of controlling F. verticillioides in greenhouse assays, as well as eight other maize phytopathogenic fungi in vitro. The results suggest that a talc-based powder formulation of Bacillus B25 spores may be sufficient to produce inoculum for biocontrol of maize ear and root rots caused by F. verticillioides.  相似文献   

9.
This research was conducted to distinguish between the separate effects of the Phanerochaete chrysosporium inoculation and sample property heterogeneity induced by different inoculation regimes on the indigenous bacterial communities during agricultural waste composting. P. chrysosporium was inoculated during different phases. The bacterial community abundance and structure were determined by quantitative PCR and denaturing gradient gel electrophoresis analysis, respectively. Results indicated a significant stimulatory effect of P. chrysosporium inoculation on the bacterial community abundance. The bacterial community abundance significantly coincided with pile temperature, ammonium, and nitrate (P?<?0.006). Variance partition analysis showed that the P. chrysosporium inoculation directly explained 20.5 % (P?=?0.048) of the variation in the bacterial communities, whereas the sample property changes induced by different inoculation regimes indirectly explained up to 35.1 % (P?=?0.002). The bacterial community structure was significantly related to pile temperature, water-soluble carbon (WSC), and C/N ratio when P. chrysosporium were inoculated. The C/N ratio solely explained 7.9 % (P?=?0.03) of the variation in community structure, whereas pile temperature and WSC explained 7.7 % (P?=?0.026) and 7.5 % (P?=?0.034) of the variation, respectively. P. chrysosporium inoculation affected the indigenous bacterial communities most probably indirectly through increasing pile temperature, enhancing the substrate utilizability, and changing other physico-chemical factors.  相似文献   

10.
Experimental warming of forest ecosystems typically stimulates soil respiration (CO2 efflux), but most warming experiments have been conducted in northern latitudes (>?40°N) with relatively young soils. We quantified the influence of experimental warming on soil respiration (RT) in two adjacent forest habitats—a mature, closed canopy forest and a gap where trees were manually removed— on highly-weathered Ultisols of the southeastern U.S. (33°N). Using temperature variation, both natural and induced by experimental warming, we also quantified the temperature sensitivity of RT, defined as the activation energy, EA in the Arrhenius equation. Experimental warming (either + 3 °C or + 5 °C above ambient) did not significantly increase soil respiration rate or cumulative CO2 loss over the 3 years of the experiment, and did not influence the temperature sensitivity of soil respiration, once the influence of natural temperature variation was taken into consideration. Despite the absence of an experimental warming effect, we observed that EA varied on monthly time scales, and varied differently in each habitat. Soil moisture and habitat also influenced RT, but the effects were not consistent, and varied by month. Our results suggest that although RT does depend on temperature, the sensitivity of RT to temperature variation is influenced primarily by factors like microclimate and plant phenology that can change on relatively short (<?monthly) time scales. Thus, using the temperature sensitivity of RT to predict future CO2 losses due to warming is only reasonable if monthly variation in EA is incorporated into models for lower-latitude subtropical ecosystems with highly weathered soils, such as those in this study. Finally, our results suggest that higher temperatures may not enhance RT in highly-weathered, C-poor soils to the extent that has been reported in prior studies of high-latitude soils, which may constrain ecosystem-atmosphere carbon exchanges and feedbacks to the climate system.  相似文献   

11.
Deladenus (=?Beddingia) siricidicola (Tylenchida: Neotylenchidae) is the most effective biocontrol agent used against the invasive wood wasp, Sirex noctilio (Fabricius) (Hymenoptera: Siricidae). The nematodes feed and reproduce on the wood-inhabiting fungus, Amylostereum areolatum (Chaillet ex Fr.) Boidin (Russulales: Amylostereaceae) and parasitise larvae of S. noctilio. In the nematode biocontrol program, the nematodes are inoculated into herbicide-weakened ‘trap trees’. Recent declines in nematode parasitism of S. noctilio in Australia have coincided with an increased incidence of an exotic bark beetle, Ips grandicollis (Eichhoff) (Coleoptera: Curculionidae), attacking trap trees and vectoring a wood-inhabiting fungus, Ophiostoma ips (Rumbold) Nannfelt (Ophiostomatales: Ophiostomataceae), which may inhibit migration of the nematode within the tree to the detriment of S. noctilio biocontrol. Several in vitro and in vivo experiments were conducted to investigate the effect of fungal interactions on the ability of D. siricidicola to locate and reproduce on A. areolatum. Deladenus siricidicola showed preference to A. areolatum in the presence and absence of O. ips, but the presence of O. ips negatively affected the choice response and the number of eggs laid by the nematodes. Deladenus siricidicola was unable to survive and reproduce on O. ips. Results give a clearer understanding of the choice response of D. siricidicola in I. grandicollis infested trees, explaining the disruptive impact of bark beetles on biocontrol of S. noctilio, an effect that could extend from Australia to other important pine growing countries.  相似文献   

12.
In arid and semiarid environments, the presence of woody species generates a series of environmental gradients that increase spatial heterogeneity and modify the pattern of distribution of the other species. We postulate that the temporal and spatial variability in litter input generated by woody species is a relevant factor in the generation of edaphic heterogeneity by redistribution of nutrients and the physical effects of litter. The objective of this study was to determine the temporal and spatial variability in the amount of litter input under the canopy of dominant woody plants (Prosopis flexuosa and Larrea divaricata) and in exposed areas at the Ñacuñán Reserve, in the central zone of the Monte desert. Litterfall was collected during 2 years from 30-cm-diameter litter traps distributed at three microsites: under P. flexuosa canopy, under L. divaricata canopy, and in exposed areas. Microhabitats beneath Prosopis showed the highest litter input per m2 (between 320 and 527 g/m2), and, consequently, more than 50% of it fell to the soil beneath the canopy of P. flexuosa. Only 10% fell on exposed areas, which exhibited an annual input rate per m2 of a lower order of magnitude than the sites under Prosopis. Litterfall presented a peak in summer as a consequence of convective storms, and a second one in autumn due to phenological shedding. Our results suggest that woody species have a central importance in the dynamics of nutrients in arid lands by both the increase of total productivity and litterfall, and the spatial and temporal regulation of litter input.  相似文献   

13.
Zingiber zerumbet, a perennial rhizomatous herb exhibits remarkable disease resistance as well as a wide range of pharmacological activities. Towards characterizing the endophytic population of Z. zerumbet rhizomes, experiments were carried out during two different growing seasons viz., early-June of 2013 and late-July of 2014. A total of 34 endophytes were isolated and categorized into 11 morphologically distinct groups. Fungi were observed to predominate bacterial species with colonization frequency values ranging from 12.5 to 50 %. Among the 11 endophyte groups isolated, molecular analyses based on ITS/16S rRNA gene sequences identified seven isolate groups as Fusarium solani, two as F. oxysporum and one as the bacterium Rhizobium spp. Phylogenetic tree clustered the ITS sequences from Z. zerumbet endophytes into distinct clades consistent with morphological and sequence analysis. Dual culture assays were carried out to determine antagonistic activity of the isolated endophytes against Pythium myriotylum, an economically significant soil-borne phytopathogen of cultivated ginger. Experiments revealed significant P. myriotylum growth inhibition by F. solani and F. oxysporum isolates with percentage of inhibition (PoI) ranging from 45.17 ± 0.29 to 62.2 ± 2.58 with F. oxysporum exhibiting higher PoI values against P. myriotylum. Using ZzEF8 metabolite extract, concentration-dependent P. myriotylum hyphal growth inhibition was observed following radial diffusion assays. These observations were confirmed by scanning electron microscopy analysis wherein exposure to ZzEF8 metabolite extract induced hyphal deformities. Results indicate Z. zerumbet endophytes as promising resources for biologically active compounds and as biocontrol agents for soft rot disease management caused by Pythium spp.  相似文献   

14.
Striga hermonthica is a hemiparasitic weed that causes huge grain yield losses to small-scale farmers in Africa. Effective biocontrol agents against S. hermonthica can sustainably mitigate these losses. This study characterized the biocontrol potential of culturable fungal and bacterial isolates from S. hermonthica suppressive soils of western Kenya. These isolates were screened for their ability to produce antibiotic compounds and extra cellular enzymes and also their ability to cause S. hermonthica seed decay. Genomic DNA of the selected bacterial and fungal isolates was extracted and partial characterization of 16S rRNA and 18S rRNA genes performed respectively. Analysis show that antibiosis and enzymatic properties of potential biocontrol isolates correlated positively. Isolate KY041696 recorded high antibiosis, enzymatic and seed decay values. This study also revealed that bioactive bacterial isolates belonged to Bacillus, Streptomyces and Rhizobium genera. In this study, no fungal isolate caused S. hermonthica seed decay. This study therefore provides baseline information on the potential biocontrol microbes against S. hermonthica in Western Kenya that could be exploited further in the management of the weed.  相似文献   

15.
Thrips are one of the insect pests of persimmon (Diospyros kaki Thunb.) in the major production areas of astringent persimmon in Korea. We surveyed astringent persimmon orchards in the Damyang, Sangju and Cheongdo regions of Korea to determine thrips species composition and abundance. Orchards sprayed with either organic or conventional pesticides were sampled over the course of one flowering season, using yellow sticky traps to determine if this is a suitable method for monitoring thrips populations, and to determine thrips species composition and abundance. Eight thrips species were captured on yellow sticky traps in both the tree canopy and ground cover: Ponticulothrips diospyrosi Haga et Okajima, Scirtothrips dorsalis (Hood), Frankliniella occidentalis (Pergande), F. intonsa (Trybom), Thrips tabaci (Lindeman), T. hawaiiensis (Morgan), T. coloratus (Schmutz) and T. palmi (Karny). In all regions, F. occidentalis and F. intonsa dominated in both organic and conventional orchards. S. dorsalis, F. occidentalis, F. intonsa and T. hawaiiensis were found in persimmon flowers, with S. dorsalis the dominant thrips. Significantly more S. dorsalis were captured from flowers in the lower and middle canopy than in flowers from the upper canopy. Fruit damage was also significantly higher in fruit from the lower canopy than in fruit from the middle and upper canopy.  相似文献   

16.
17.
We studied the role of floristic composition and associational resistance in shrub dynamics by comparing spatial patterns of shrub cover after prescribed burning in neighbouring grassland communities with different palatability. The study focused on the shrub Cytisus balansae ssp. europaeus (G. López and Jarvis) Muñoz Garmendia. Seven two-dimensional transects (20 × 0.5 m) were established to monitor shrub cover for at least 10 years after prescribed burning. Shrub cover and spatial patterns were assessed in each transect. Floristic similarity between transects and Cytisus associations with different species were estimated. Over an entire transect, shrub cover and shrub scale of pattern and patch size were lowest in the unpalatable Festuca eskia grasslands and highest in F. paniculata grasslands. At short distances, we found negative associations between Cytisus and most of the grasses, except for F. nigrescens and Agrostis capillaris, which showed positive associations with Cytisus. Thus, the effects of associational resistance on shrub encroachment were not as marked as expected, F. eskia grasslands showing the lowest shrub encroachment rates after fire. By contrast, Cytisus was positively associated with the most palatable grasses in the site, namely F. nigrescens and A. capillaris. We conclude that differences in floristic composition drive shrub encroachment rates in these spatially heterogeneous communities.  相似文献   

18.
Drosophila incompta belongs to the flavopilosa group of Drosophila, and has a restricted ecology, being adapted to flowers of Cestrum as feeding and oviposition sites. We sequenced, assembled, and characterized the complete mitochondrial genome (mtDNA) of D. incompta. In addition, we performed phylogenomic and polymorphism analyses to assess evolutionary diversification of this species. Our results suggest that this genome is syntenic with the other published mtDNA of Drosophila. This molecule contains 15,641 bp and encompasses two rRNA, 22 tRNA and 13 protein-coding genes. Regarding nucleotide composition, we found a high A?T bias (76.6 %). The recovered phylogenies indicate D. incompta in the virilisrepleta radiation, as sister to the virilis or repleta groups. The most interesting result is the high degree of polymorphism found throughout the D. incompta mitogenome, revealing pronounced intrapopulational variation. Furthermore, intraspecific nucleotide diversity levels varied between different regions of the genome, thus allowing the use of different mitochondrial molecular markers for analysis of population structure of this species.  相似文献   

19.
Knowing how microevolutionary processes, such as genetic drift and natural selection, shape variation in adaptive traits is strategic for conservation measures. One way to estimate local adaptation is to compare divergences in quantitative traits (QST) and neutral loci (FST). Therefore, we have assessed the pattern of phenotypic and molecular genetic divergence among natural subpopulations of the fruit tree Eugenia dysenterica DC. A provenance and progeny test was performed to assess the quantitative traits of the subpopulations collected in a wide distribution area of the species in the Brazilian Cerrado. The sampled environments are in a biodiversity hotspot with heterogeneous soil and climate conditions. By associating quantitative trait variation in initial seedling development with neutral microsatellite marker variation, we tested the local adaptation of the traits by the QSTFST contrast. Genetic drift was prevalent in the phenotypic differentiation among the subpopulations, although the traits seedling emergence time and root green mass, which are relevant for adaptation to the Cerrado climate, showed signs of uniform selection. Our results suggest that E. dysenterica has a spatial genetic structure divided into two large groups, separated by a line that divides the Cerrado biome in a southwestern to northeastern direction. This structure must be taken into account for managing E. dysenterica genetic resources both for conservation and breeding purposes.  相似文献   

20.
Pelagic larval dispersal habits influence the population genetic structure of marine mollusk organisms via gene flow. The genetic information of the clam Gomphina aequilatera (short larval stage, 10 days) which is ecologically and economically important in the China coast is unknown. To determine the influence of planktonic larval duration on the genetic structure of G. aequilatera. Mitochondrial markers, cytochrome oxidase subunit i (COI) and 12S ribosomal RNA (12S rRNA), were used to investigate the population structure of wild G. aequilatera specimens from four China Sea coastal locations (Zhoushan, Nanji Island, Zhangpu and Beihai). Partial COI (685 bp) and 12S rRNA (350 bp) sequences were determined. High level and significant FST values were obtained among the different localities, based on either COI (FST?=?0.100–0.444, P?<?0.05) or 12S rRNA (FST?=?0.193–0.742, P?<?0.05), indicating a high degree of genetic differentiation among the populations. The pairwise Nm between Beihai and Zhoushan for COI was 0.626 and the other four pairwise Nm values were >?1, indicating extensive gene flow among them. The 12S rRNA showed the same pattern. AMOVA test results for COI and 12S rRNA indicated major genetic variation within the populations: 77.96% within and 22.04% among the populations for COI, 55.73% within and 44.27% among the populations for 12S rRNA. A median-joining network suggested obvious genetic differentiation between the Zhoushan and Beihai populations. This study revealed the extant population genetic structure of G. aequilatera and showed a strong population structure in a species with a short planktonic larval stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号