首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Mutants of Apergillus nidulans with lesions in a gene, areA (formerly called amdT), have been isolated by a variety of different selection methods. The areA mutants show a range of pleiotropic growth responses to a number of compounds as sole nitrogen sources, but are normal in utilization of carbon sources. The levels of two amidase enzymes as well as urease have been investigated in the mutants and have been shown to be affected by this gene. Most of the areA mutants have much lower amidase-specific activities when grown in ammonium-containing medium, compared with mycelium incubated in medium lacking a nitrogen source. Some of the areA mutants do not show derepression of urease upon relief of ammonium repression. The dominance relationships of areA alleles have been investigated in heterozygous diploids, and these studies lend support to the proposal that areA codes for a positively acting regulatory product. One of the new areA alleles is partially dominant to areA+ and areA102. This may be a result of negative complementation or indicate that areA has an additional negative regulatory function. Investigation of various amdR; areA double mutants has led to the conclusion that amdR and areA participate in independent regulatory circuits in the control of acetamide utilization. Studies on an amdRc; areA double mutant indicate that areA is involved in derepression of acetamidase upon relief of ammonium repression.  相似文献   

11.
12.
13.
Seventeen accessions of Arabidopsis thaliana inoculated with the cowpea rust fungus Uromyces vignae exhibited a variety of expressions of nonhost resistance, although infection hypha growth typically ceased before the formation of the first haustorium, except in Ws-0. Compared with wild-type plants, there was no increased fungal growth in ndr1 or eds1 mutants defective in two of the signal cascades regulated by the major class of Arabidopsis host resistance genes. However, in the Col-0 background, infection hyphae of U. vignae and two other rust fungi were longer in sid2 mutants defective in an enzyme that synthesizes salicylic acid (SA), in npr1 mutants deficient in a regulator of the expression of SA-dependent pathogenesis related (PR) genes, and in NahG plants containing a bacterial salicylate hydroxylase. Infection hyphae of U. vignae and U. appendiculatus but not of Puccinia helianthi were also longer in jar1 mutants, which are defective in the jasmonic acid defense signaling pathway. Nevertheless, haustorium formation increased only for the Uromyces spp. and only in sid2 mutants or NahG plants. Rather than the hypersensitive cell death that usually accompanies haustorium formation in nonhost plants, Arabidopsis typically encased haustoria in calloselike material. Growing fungal colonies of both Uromyces spp., indicative of a successful biotrophic relationship between plant and fungus, formed in NahG plants, but only U. vignae formed growing colonies in the sid2 mutants and cycloheximide-treated wild-type plants. Growing colonies did not develop in NahG tobacco or tomato plants. These data suggest that nonhost resistance of Arabidopsis to rust fungi primarily involves the restriction of infection hypha growth as a result of defense gene expression. However, there is a subsequent involvement of SA but not SA-dependent PR genes in preventing the Uromyces spp. from forming the first haustorium and establishing a sufficient biotrophic relationship to support further fungal growth. The U. vignae-Arabidopsis combination could allow the application of the powerful genetic capabilities of this model plant to the study of compatibility as well as nonhost resistance to rust fungi.  相似文献   

14.
Solomon PS  Oliver RP 《Planta》2002,214(3):414-420
The growth of the biotrophic pathogen Cladosporium fulvum within the tomato (Lycopersicon esculentum Mill.) leaf is restricted to the intercellular space. Previous studies from this laboratory have demonstrated that gamma-aminobutyric acid (GABA) accumulates to millimolar concentrations in the apoplast during a compatible interaction. We decided to further investigate the role of GABA during infection. A gene encoding a required enzyme for GABA metabolism, GABA transaminase (Gat1), was cloned and sequenced from C. fulvum. The predicted protein sequence of Gat1 had high homology to other fungal GABA transaminases, particularly from Aspergillus nidulans. In vitro expression experiments revealed Gat1 to be strongly expressed during fungal growth on both GABA and glutamate whereas nearly no expression was evident during nitrogen starvation conditions. Expression of Gat1 was also apparent during infection, suggesting for the first time that C. fulvum actively metabolises GABA during infection. This indicates that the fungus may be utilising the GABA in the apoplast as a nutrient source. Further analysis revealed that the expression of tomato glutamate decarboxylase, the enzyme responsible for GABA synthesis, appeared appreciably higher during a compatible interaction than in the incompatible interaction. These findings imply that the infecting fungus may alter the physiology of the tomato leaf with the result that a source of nitrogen is supplied.  相似文献   

15.
 Arbuscular mycorrhizal fungi (AMF) and Erysiphe graminis are obligate biotrophic fungi with different outcomes in their interaction with plants, different targeted host tissues, but similar patterns of development and infection processes. These similarities raise the question of whether the two types of biotrophic fungal infections have common features in their regulation. To investigate this question, we compared a number of Ror and Rar barley mutants susceptible to E.graminis f. sp. hordei, as well as their resistant progenitors, for susceptibility to infection by the AMF Glomus mosseae. The two powdery mildew-resistant lines BC Ingrid and Sultan presented a similar reduction in G. mosseae development within roots when compared to the wildtype cultivar Ingrid, indicating a systemic effect of the altered genes in the plant. Ror and Rar mutants, in which susceptibility to powdery mildew is restored, showed increased resistance to AM fungal development in their roots when compared to their progenitors, which suggests that corresponding mutations must have affected genes which differentially modulate symbiotic and pathogenic biotrophic plant-fungus interactions. Accepted: 16 September 1999  相似文献   

16.
The opportunistic pathogen Penicillium marneffei displays a temperature-dependent dimorphic switching program with saprophytic hyphal growth at 25 °C and yeast growth at 37 °C. The areA gene of P. marneffei has been isolated and found to be required for the utilisation of nonpreferred nitrogen sources during both growth programs of P. marneffei, albeit to differing degrees. Based on this functional characterisation and high degree of sequence conservation with other fungal GATA factors, P. marneffei areA represents an orthologue of Aspergillus nidulans areA and Neurospora crassa NIT2. Based on this study it is proposed that AreA is likely to contribute to the pathogenicity of P. marneffei by facilitating growth in the host environment and regulating the expression of potential virulence factors such as extracellular proteases.  相似文献   

17.
18.
19.
20.
The tyrosine‐sulfated peptides PSKα and PSY1 bind to specific leucine‐rich repeat surface receptor kinases and control cell proliferation in plants. In a reverse genetic screen, we identified the phytosulfokine (PSK) receptor PSKR1 as an important component of plant defense. Multiple independent loss‐of‐function mutants in PSKR1 are more resistant to biotrophic bacteria, show enhanced pathogen‐associated molecular pattern responses and less lesion formation after infection with the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. By contrast, pskr1 mutants are more susceptible to necrotrophic fungal infection with Alternaria brassicicola, show more lesion formation and fungal growth which is not observed on wild‐type plants. The antagonistic effect on biotrophic and necrotrophic pathogen resistance is reflected by enhanced salicylate and reduced jasmonate responses in the mutants, suggesting that PSKR1 suppresses salicylate‐dependent defense responses. Detailed analysis of single and multiple mutations in the three paralogous genes PSKR1, ‐2 and PSY1‐receptor (PSY1R) determined that PSKR1 and PSY1R, but not PSKR2, have a partially redundant effect on plant immunity. In animals and plants, peptide sulfation is catalyzed by a tyrosylprotein sulfotransferase (TPST). Mutants lacking TPST show increased resistance to bacterial infection and increased susceptibility to fungal infection, mimicking the triple receptor mutant phenotypes. Feeding experiments with PSKα in tpst‐1 mutants partially restore the defense‐related phenotypes, indicating that perception of the PSKα peptide has a direct effect on plant defense. These results suggest that the PSKR subfamily integrates growth‐promoting and defense signals mediated by sulfated peptides and modulates cellular plasticity to allow flexible adjustment to environmental changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号