首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new assay method is described for the simultaneous determination of free 3-methoxy-4-hydroxymandelic acid and 3-methoxy-4-hydroxyphenylethyleneglycol in plasma utilizing separation and purification by Bio-Gel P-10 followed by high-performance liquid chromatography with electrochemical detection. This technique is sensitive and reliable, and offers an inexpensive and practical alternative to gas chromatographic—mass fragmentographic methods for the monitoring of plasma levels of these catecholamine metabolites in the study of selective metabolic pathways of endogenous norepinephrine originating in the peripheral and the central nervous systems.  相似文献   

2.
A new gas chromatographic method, using only flame ionization detection which can determine nanogram quantities of homovanillic acid, 3,4-dihydroxyphenylacetic acid, 3-methoxy-4-hydroxyphenylethyleneglycol and 3,4-dihydroxyphenylethyleneglycol in the same reaction, is described. These compounds are treated with diazoethane and n-butylboronic acid. Homovanillic acid and 3,4-dihydroxyphenylacetic acid are converted to their ethyl esters while 3-methoxy-4-hydroxyphenylethyleneglycol and 3,4-dihydroxyphenylethyleneglycol from cyclic boronates and are thus assayed. This method is quantitative, highly specific and sensitive. It has been applied to the analysis of these compounds in urine.  相似文献   

3.
A high-performance liquid chromatographic method for the routine determination of elevated urinary levels of the serotonin metabolite 5-hydroxytryptophol (5-HTOL) is described. Urine samples were treated with β-glucuronidase, and 5-HTOL was isolated by solid-phase extraction on a small Sephadex G-10 column prior to injection onto an isocratically eluted C18 reversed-phase column. Detection of 5-HTOL was performed electrochemically at +0.60 V vs. Ag/AgCl. The limit of detection was ca. 0.05 μM, and the intra-assay coefficients of variation were below 6% with urine samples containing 0.2 and 2.1 μM 5-HTOL and a standard solution of 2.0 μM (n = 5). The recovery of 5-HTOL after the sample clean-up procedure was close to 100%. A good correlation (r2 = 0.97; n = 12) was obtained between the present method and a sensitive and specific gas chromatographic—mass spectrometric method. The total (free plus conjugated) 5-HTOL levels in urine were normally below 0.2 μM, but after an acute dose of alcohol they increased to 0.5–15 μM.  相似文献   

4.
A relatively simple reversed-phase high-performance liquid chromatographic method for the determination of the polar metabolites of nifedipine in biological fluids is described. After conversion of 2-hydroxymethyl-6-methyl-4-(2-nitrophenyl)pyridine-3,5-dicarboxylic acid 5-methyl ester (IV) into 5,7-dihydro-2-methyl-4-(2-nitrophenyl)-5-oxofuro[3,4-b]pyridine-3-carboxylic acid methyl ester (V) by heating under acidic conditions, V was extracted with n-pentane—dichloromethane (7:3) and analysed on a C18 column with ultraviolet detection. Subsequently, 2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridinedicarboxylic acid monomethyl ester (III) was extracted with chloroform and analysed on the same system. Limits of determination in blood were 0.1 μg/ml for III and 0.05 μg/ml for IV and V; these limits were two to ten times higher for urine. This inter-assay variability was always less than 7.5%.  相似文献   

5.
A reversed-phase high-performance liquid chromatographic method is described for the simultaneous determination of idarubicin and idarubicinol in rat plasma. Blood samples were analyzed from 16 rats which had received an intravascular dose of 2.25 mg kg−1 idarubicin. After deproteinization with acetonitrile, the separation was performed with a LiChrospher 100 RP-18 column (5 μm), using fluorescence detection (excitation: 485 nm/emission: 542 nm). The mean recovery was 95.6% for idarubicin and 90.7% for idarubicinol, respectively. The detection limit was 0.25 ng ml−1 using an injection volume of 50 μl. Daily relative standard deviation (RSD) was 3.2% (10 ng idarubicin/ml, n=10) and 4.4% (10 ng idarubicinol/ml, n=10).  相似文献   

6.
A method for the routine clinical examination of serum gliclazide by high-performance liquid chromatography (HPLC) on a column packed with a macroporous anion-exchange resin, Diaion CDR-10, was developed. The elution was performed with acetonitrile—methyl alcohol—1.2 M ammonium perchlorate (4:3:7, v/v/v) at a flow-rate of 0.4 ml/min. The retention time of gliclazide was 15 min. It seems that the retention mechanism of gliclazide under the HPLC conditions described is not only ion-exchange mode but reversed-phase mode between the anion-exchange resin and the mobile phase. The detection limit of gliclazide was 0.2 μg/ml in plasma. The coefficient of variation for the within-day assay was 5.0% (0.2 μg/ml, n=8). The decay curve of serum gliclazide in diabetic patients was determined.  相似文献   

7.
A high-performance liquid chromatographic method for the determination of picotamide in human plasma and urine is described. After addition of an internal standard (bamifylline), the plasma and urine samples were subjected to liquid—liquid extraction and clean-up procedures. The final extracts were evaporated to dryness and the resulting residues were reconstituted in 100 μl of methanol—water (50:50, v/v) and chromatographed on a LiChrosorb RP-SELECT B reversed-phase column coupled to an ultraviolet detector monitored at 230 nm. Chromatographic analysis takes about 10 min per sample. The assay was linear over a wide range and has a limit of detection of 0.005 and 0.1 μg/ml in plasma and urine, respectively. It was selective for picotamide, accurate and robust and thus suitable for routine assays after therapeutic doses of picotamide.  相似文献   

8.
7-[(2,2-Dimethyl)propyl)]-1-methylxanthine (I, Lab code MX2/120) is a new potent antibronchospastic agent. A rapid and simple HPLC assay for I in guinea pig plasma has been developed. Compound I was extracted from plasma with dichloromethane by a solid-phase extraction procedure, after adding 1,3-dimethyl-7-pentylxanthine at a concentration of 5 μg/ml as the internal standard (I.S.). The extraction residue was redissolved in water—acetonitrile and chromatographed on a RP-18 reversed-phase column. The eluate was monitored by spectrophotometric detection at 280 nm. The method showed good linearity over the range 0.1–20 μg/ml (r = 0.9998) and is precise (C.V. × Student's T-TEST = 1.84%) and accurate (mean recovery ± limit of CONFIDENCE = 100.25 ± 0.34). The HPLC assay was successfully applied to the determination of the pharmacokinetic profile of I after intravenous and oral administration in guinea pigs. The main pharmacokinetic parameters are presented.  相似文献   

9.
A sensitive and direct reversed-phase liquid chromatographic method with amperometric detection was developed for the determination of 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG). The concentrations of the free and sulfate conjugate of MHPG were measured in human lumbar cerebrospinal fluid. All samples were preconcentrated by extraction with ethyl acetate. Deconjugation of the sulfate form of MHPG was achieved by enzymatic hydrolysis with sulfatase.Peaks were identified on the basis of chromatographic behavior, ratio of responses at several oxidation potentials and the stopped-flow UV spectra of the collected fractions.The free MHPG content of 20 cerebrospinal fluid samples ranged between 0.720 and 19.51 ng/ml with the mean of 5.126 ± 4.652 (S.D.) ng/ml. The sulfate conjugate of MHPG in 12 samples of cerebrospinal fluid ranged between 0.08 and 0.850 ng/ml with the mean value of 0.2365 ± 0.2269 (S.D.) ng/ml. Although our results correlate well with the literature values, no attempt was made to interpret the quantitative data since samples were obtained from routine, diagnostic testing of patients admitted to the medical or neurologic services at the Mount Sinai Hospital.  相似文献   

10.
A rapid, sensitive, and specific reversed-phase high-performance liquid chromatography assay was developed for the determination of 1,3,4-triphenylpyrazole-5-acetic acid (isofezolac) in plasma and urine. The assay involves extraction into diethyl ether from plasma buffered at pH 4.4. The organic phase is evaporated and the residue, dissolved in the mobile phase [acetonitrile—water—0.2 M phosphate buffer (pH 3) (65 : 15 : 20)] is chromatographed at a flow-rate of 1.5 ml/min. The drug is detected by its UV absorption (detection limit 100 ng/ml) or its very intense fluorescence (detection limit 10 ng/ml). Absolute analytical recoveries for isofezolac varied from 92.9 to 100.4%. The accuracy is ca. 1%. Each separation requires about 6 min. This method was applied successfully to the determination of isofezolac in humans for pharmacokinetic studies.  相似文献   

11.
A sensitive and simple method is described for the selective determination in human plasma of α-amanitin, the most poisonous and prevalent toxin in the lethal fungi of species Amanita, using high-performance liquid chromatography with amperometric detection. After an extraction of plasma with disposable C18 silica cartridges, the extracts were separated by isocratic reversed-phase chromatography using a macroporous poly(styrene—divinylbenzene) column and a mobile phase of 0.05 M phosphate buffer—acetonitrile (91:9) at the apparent pH of 9.5. Amperometric detection was performed by applying an oxidation potential as low as +350 mV (vs. Ag/AgCl) to a glassy carbon electrode, in a thin-layer flow-cell. The linear range for α-amanitin was 3–200 ng/ml, and the relative limit of detection in plasma was 2 ng/ml at a signal-to-noise ratio of 2. The intra-assay precision was evaluated at levels of 10 and 200 ng/ml; the coefficients of variation were 4.5 and 2.6% (n=5), respectively. Inter-assay coefficients of variation were 6.5 and 4.2% (n=5) for the same concentrations of toxin. These analytical conditions have been chosen on the basis of a preliminary in batch cyclic voltammetric investigation of α-, β- and γ-amanitins, which has allowed their oxidation process to be clarified and the pH dependence of their oxidation potentials to be determined. All three amanitins are oxidized at the same potential values, and adsorption onto the electrode surface of both reactant and products was found in all cases. This adsorption did not affect the signal recorded for α- and γ-amanitins at the amperometric detector, and for β-amanitin a stronger adsorption for the anodic product was found, which leads to a marked positive shift of the potential required for the oxidation of this isomer in the amperometric detector cell.  相似文献   

12.
A method is described for the simultaneous determination of vanilmandelic acid, 3-methoxy-4-hydroxyphenylethylene glycol, 5-hydroxyindoleacetic acid, and homovanillic acid in a human plasma sample using reversed-phase high-performance liquid chromatography with column switching and amperometric detection. Two methods of sample preparation were tested. Liquid—liquid extraction yields better recoveries, is more selective and precise than solid-phase extraction and allows a shorter time of chromatographic analysis. Estimated plasma values of the metabolites from healthy controls are in good agreement with previously reported levels. Studies of alcoholics at the beginning of the delirium tremens provided different plasma levels of the metabolites, dependent on the different duration — and hence the severity — of the delirium.  相似文献   

13.
A rapid and sensitive method for extracting temazepam from human serum and urine is presented. Free temazepam is extracted from plasma and urine samples using n-butyl chloride with nitrazepam as the internal standard. Temazepam glucuronide is analyzed as free temazepam after incubating extracts with β-glucuronidase. Separation is achieved using a C8 reversed-phase column with a methanol—water—phosphate buffer mobile phase. An ultraviolet detector operated at 230 nm is used and a linear response is observed from 20 ng/ml to 10 μg/ml. The limit of detection is 15.5 ng/ml and the limit of quantitation is 46.5 ng/ml. Coefficients of variation are less than 10% for concentrations greater than 50 ng/ml. Application of the methodology is demonstrated in a pharmacokinetic study using eight healthy male subjects.  相似文献   

14.
An isocratic HPLC method was developed and validated for the quantitation of methocarbamol in human plasma. Methocarbamol and internal standard in 200 μl of human plasma were extracted with ethyl acetate, evaporated to dryness and reconstituted in water. Separation was achieved on a reversed-phase C18 column with a mobile phase of methanol—0.1 M potassium phosphate monobasic—water (35:10:55, v/v/v). The detection was by ultraviolet at 272 nm. Linearity was established at 1–100 μg/ml (r > 0.999). The limit of quantitation was designed as 1 μg/ml to suit pharmacokinetic studies. Inter-day precision and accuracy of the calibration standards were 1.0 to 3.6% coefficients of variance (C.V.) and −2.0 to +1.6% relative error (R.E.). Quality controls of 3, 20 and 70 μg/ml showed inter-day precision and accuracy of 2.5 to 3.6% C.V. and −0.9 to −0.4% R.E. Recovery of methocarbamol was 91.4–100.3% in five different lots of plasma. The method was shown to be applicable on different brands of C18 columns.  相似文献   

15.
An isocratic reversed-phase high-performance liquid chromatographic method for the determination of amidepin has been developed. The method is based on the extraction of alkaline plasma with diethyl ether—dichloromethane, and the injection into the Supelcosil LC-18 column of the evaporated and reconstituted organic phase. After separation, detection is carried out by a fluorescence detector (excitation at 195 nm with no filter). The limit of detection is 10 ng/ml of plasma. The mean coefficient of variation is 12%. The plasma levels after oral administration and after intravenous administration are shown.  相似文献   

16.
The determination of 3-hydroxyquinine in urine and plasma samples is described. Extraction was performed using a mixture of toluene–butanol (75:25, v/v), followed by back-extraction into the mobile phase, which consisted of 0.1 M phosphate buffer, acetonitrile, tetrahydrofuran and triethylamine. A reversed-phase liquid chromatography system with fluorescence detection and a CT-sil C18 column were used. The within-assay coefficient of variation of the method was 2% at the higher concentration values in plasma, 2.95 μM, 4% at 227 nM and 9% at the lower limit of quantitation, 4.5 nM. In urine, the coefficient of variation was 11% at the lower concentration, 227 nM and was 3% at 56.8 μM. The between-assay coefficient of variation was 4% at the low concentration (5.1 nM) in plasma, 2% at 276.8 nM and 3% at 1.97 μM. In urine, the between assay coefficient of variation was 4% at 204.6 nM, 3% at 5.12 μM and 2% at 56.8 μM.  相似文献   

17.
A rapid clean-up procedure based on ion-pair solid-phase extraction (SPE) for the high-performance liquid chromatographic (HPLC) determination of spectinomycin in swine, calf and chicken plasma at a limit of detection of 50 ng/ml is described. After dilution with water and adjustment of the pH to approximately 5.6, the plasma is applied to a high-hydrophobic C18 SPE column treated with sodium dioctylsulphosuccinate. Spectinomycin is eluted with methanol and derivatized with 2-naphthalene sulphonyl chloride prior to chromatography. The HPLC set-up consists of a dual-column system using two Chromspher silica columns and dichloromethane—acetonitrile—ethyl acetate—acetic acid, in different ratios, as mobile phases. Detection is performed at 250 nm. Quantification is carried out using external standards prepared in blank cleaned plasma. Mean recoveries were 83 ± 3% (n = 5), 93 ± 6% (n = 5) and 92 ± 6% (n = 6) for swine, calf and chicken plasma, respectively, at the 0.1 μg/ml level.  相似文献   

18.
A rapid and selective high-performance liquid chromatographic assay for determination of a new antimalarial drug (benflumetol, BFL) is described. After extraction with hexane-diethyl ether (70:30, v/v) from plasma, BFL was analysed using a C18 Partisil 10 ODS-3 reversed-phase stainless steel column and a mobile phase of acetonitrile-0.1 M ammonium acetate (90:10, v/v) adjusted to pH 4.9 with ultraviolet detection at 335 nm. The mean recovery of BFL over a concentration range of 50–400 ng/ml was 96.8±5.2%. The within-day and day-to-day coefficients of variation were 1.8–4.0 and 1.8–4.2%, respectively. The minimum detectable concentration in plasma for BFL was 5 ng/ml with a C.V. of less than 10%. This method was found to be suitable for clinical pharmacokinetic studies.  相似文献   

19.
A selective HPLC method is described for the determination of cefpodoxime levels in plasma and sinus mucosa. Sample preparation included solid-phase extraction with a C8 cartridge. Cefpodoxime and cefaclor (internal standard) were eluted with methanol and analyzed on an optimised system consisting of a C18 stationary phase and a ternary mobile phase (0.05 M acetate buffer pH 3.8—methanol—acetonitrile, 87:10:3, v/v) monitored at 235 nm. Linearity and both between- and within-day reproducibility were assessed for plasma and sinus mucosa samples. Inter-assay coefficients of variation were lower than 13.6% (n = 10) for plasma (0.2 μg/ml) and lower than 12.4% (n = 5) for sinus mucosa (0.25 μg/g). The quantification limit was 0.05 μg/ml for plasma and 0.13 μg/g for tissue. The method was used to study the diffusion of cefpodoxime in sinus mucosa.  相似文献   

20.
A fully automated coupled-column HPLC method for on-line sample processing and determination of the photoreactive drug 8-methoxypsoralen (8-MOP) in plasma has been developed. The method is based on the novel internal-surface reversed-phase precolumn packing materials Alkyl-Diol Silica (ADS). This new family of restricted-access materials has a hydrophilic, electroneutral outer particle surface and a hydrophobic internal pore surface. The supports tolerate the direct and repetitive injection of proteinaceous fluids such as plasma and allow a classical C18-, C8- or C4-reversed-phase partitioning at the internal (pore) surface. The total protein load, i.e. the lifetime of the precolumn used in this study (C8-Alkyl-Diol Silica, 25 μm, 25 × 4 mm I.D.), exceeds more than 100 ml of plasma. 8-MOP was detected by its native fluorescence (excitation 312 nm, emission 540 nm). Validation of the method revealed a quantitative and matrix-independent recovery (99.5–101.3% measured at five concentrations between 21.3 and 625.2 ng of 8-MOP per milliliter of plasma), linearity over a wide range of 8-MOP concentrations (1.2–3070 ng of 8-MOP/ml, r = 0.999), low limits of detection (0.39 ng of 8-MOP/ml) and quantitation (0.79 ng of 8-MOP/ml) and a high between-run (C.V. 1.47%, n = 10) and within-run (C.V. 1.33%, n = 10) reproductivity. This paper introduces coupled-column HPLC as a suitable method for on-site analysis of drug plasma profiles (bedside-monitoring).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号