共查询到20条相似文献,搜索用时 15 毫秒
1.
Coiro V Volpi R Cataldo S Magotti MG Giumelli C Russo F Stella A Chiodera P 《Regulatory peptides》2011,172(1-3):41-43
The NPY secretory pattern after an insulin tolerance test (ITT) (0.15 IU/kg body weight) was evaluated in 8 normal men. They were infused with normal saline (control test), glucose or fructose. Insulin-induced hypoglycemia produced a significant increment in serum NPY in the control test. The infusion of fructose was unable to change the NPY secretory pattern during insulin-induced hypoglycemia. In contrast, the NPY increase during ITT was completely abolished when the concomitant infusion of glucose prevented insulin-induced hypoglycemia. These results exclude a direct role of hyperinsulinemia in the mechanism underlying the stimulation of NPY secretion during ITT. Furthermore, since glucose but not fructose crosses the blood-brain-barrier (BBB), the NPY increase during ITT appears to be generated by low glucose concentrations at the level of glucosensitive areas located inside the brain. 相似文献
2.
We have studied the initial innate immune response to focal necrotic injury on different sides of the mouse blood-brain barrier by two-photon intravital microscopy. Transgenic mice in which the promoter of the myeloid isoform of lysozyme drives GFP were used to track granulocytes and monocytes. Necrotic injury in the meninges, but not the brain parenchyma, recruited GFP+ cells within minutes that fully surrounded the necrotic site within a day. Recently, it has been suggested that microglial cells and astrocytes cooperate to mount a distinct response to laser injury behind the blood-brain barrier. We followed the microglial response in heterozygous knockin mice in which GFP replaces CX3CR1 coding sequence. Prior to injury, microglial cell bodies were immobile over days, but moved to the laser injury site within 1 day. We followed astrocytes, which have been proposed to cooperate with microglial cells in response to focal injury, using transgenic mice in which glial fibrillary acidic protein promoter drives GFP expression. Before injury fine astrocyte processes permeate the parenchyma. Astrocytes polarized toward the injury in an ATP, connexin hemichannels, and intracellular Ca2+ -dependent process. The astrocytes network established a cytoplasmic Ca2+ gradient that preceded the microglial response. This is consistent with astrocyte-microglial collaboration to mount this innate response that excludes blood leukocytes. 相似文献
3.
Fanciulli G Dettori A Demontis MP Tomasi PA Anania V Delitala G 《Life sciences》2005,76(15):1713-1719
Gluten exorphin B5 (GE-B5) is a food-derived opioid peptide identified in digests of wheat gluten. We have recently shown that GE-B5 stimulates prolactin (PRL) secretion in rats; this effect is abolished by preadministration of the opioid receptor antagonist naloxone. However, since the structure of naloxone allows it to cross the blood-brain barrier (BBB) and antagonize opioid effects centrally as well as peripherally, it could not established, on the basis of those data, if GE-B5-induced PRL release is exerted through sites located inside or outside the BBB. In this study, we sought to determine the site of action of GE-B5 on PRL secretion, by pretreating male rats with naloxone methobromide (NMB), an opioid antagonist that does not cross the BBB. Four groups of rats were given the following treatments: 1) intravenous vehicle; 2) intravenous GE-B5 (3 mg kg(-1) body weight); 3) intraperitoneal NMB (5 mg kg(-1) body weight), followed by vehicle; 4) NMB, followed by GE-B5. Blood samples for PRL were taken at intervals for 40 minutes after vehicle or GE-B5 administration. GE-B5 stimulated PRL secretion; the effect was statistically significant at time 20. NMB preadministration completely abolished PRL response. Our experiment indicates that GE-B5 stimulates PRL secretion through opioid receptors located outside the BBB. Since opioid peptides do not exert their effect on PRL secretion directly, but via a reduced dopaminergic tone, our data suggest that GE-B5 can modify brain neurotransmitter release without crossing the BBB. 相似文献
4.
A new method was proposed to study the effect of noise on animal behavior. It consists of associating the action of noise to another well-known stress, the swimming performances of mice with weight attached to their tails.The results showed that there was an important reduction of the latency time prior to submersion even at intensities as low as 60 dB, independent of the frequency, in the range of mouse auditory discrimination.Furthermore, there was an increase in central nervous system excitability, which appears in the reduction of the immobile time before swimming and in the increased number of seizures during the first ten minutes of swimming. These last effects are linked with the frequency as well as with the intensity of the noise. 相似文献
5.
6.
Development of the blood-brain barrier 总被引:7,自引:0,他引:7
Engelhardt B 《Cell and tissue research》2003,314(1):119-129
The endothelial cells forming the blood-brain barrier (BBB) are highly specialized to allow precise control over the substances that leave or enter the brain. An elaborate network of complex tight junctions (TJ) between the endothelial cells forms the structural basis of the BBB and restricts the paracellular diffusion of hydrophilic molecules. Additonally, the lack of fenestrae and the extremely low pinocytotic activity of endothelial cells of the BBB inhibit the transcellular passage of molecules across the barrier. On the other hand, in order to meet the high metabolic needs of the tissue of the central nervous system (CNS), specific transport systems selectively expressed in the membranes of brain endothelial cells in capillaries mediate the directed transport of nutrients into the CNS or of toxic metabolites out of the CNS. Whereas the characteristics of the mature BBB endothelium are well described, the cellular and molecular mechanisms that control the development, differentiation and maintenance of the highly specialized endothelial cells of the BBB remain unknown to date, despite the recent explosion in our knowledge of the growth factors and their receptors specifically acting on vascular endothelium during development. This review summarizes our current knowledge of the cellular and molecular mechanisms involved in the development and maintenance of the BBB. 相似文献
7.
8.
Development of the blood-brain barrier 总被引:4,自引:0,他引:4
9.
Adipokines and the blood-brain barrier 总被引:1,自引:0,他引:1
Just as the blood-brain barrier (BBB) is not a static barrier, the adipocytes are not inert storage depots. Adipokines are peptides or polypeptides produced by white adipose tissue; they play important roles in normal physiology as well as in the metabolic syndrome. Adipokines secreted into the circulation can interact with the BBB and exert potent CNS effects. The specific transport systems for two important adipokines, leptin and tumor necrosis factor alpha, have been characterized during the past decade. By contrast, transforming growth factor beta-1 and adiponectin do not show specific permeation across the BBB, but modulate endothelial functions. Still others, like interleukin-6, may reach the brain but are rapidly degraded. This review summarizes current knowledge and recent findings of the rapidly growing family of adipokines and their interactions with the BBB. 相似文献
10.
11.
12.
Astrocyte-endothelial interactions at the blood-brain barrier 总被引:5,自引:0,他引:5
The blood-brain barrier, which is formed by the endothelial cells that line cerebral microvessels, has an important role in maintaining a precisely regulated microenvironment for reliable neuronal signalling. At present, there is great interest in the association of brain microvessels, astrocytes and neurons to form functional 'neurovascular units', and recent studies have highlighted the importance of brain endothelial cells in this modular organization. Here, we explore specific interactions between the brain endothelium, astrocytes and neurons that may regulate blood-brain barrier function. An understanding of how these interactions are disturbed in pathological conditions could lead to the development of new protective and restorative therapies. 相似文献
13.
African trypanosomes cross the blood-brain barrier, but how they do so remains an area of speculation. We propose that proteases, such as the trypanopains and oligopeptidases that are released by trypanosomes, could mediate in this process. The trypanosomes also possess cell-surface-associated acid phosphatases that could play a role in invasion similar to that in advancing cancer cells. Such enzymes, perhaps acting in concert, have the potential to cause tissue degradation and ease the passage of the trypanosomes through various tissues in the host, including the blood-brain barrier. 相似文献
14.
Adrenomedullin (ADM) is present both in the periphery and brain. In addition to its peripheral effects, this peptide can exert central effects such as decreasing food ingestion. We used multiple-time regression analysis to determine that labeled ADM can cross from blood to brain with an apparent influx constant (K(I)) of 5.83 +/- 1.44 x 10(-4) ml/g-min, much faster than that of albumin, the vascular control. HPLC showed that almost all of the injected 125I-ADM in the brain was intact, and capillary depletion showed that it could reach the parenchyma of the brain. However, more 125I-ADM was reversibly associated with the brain vasculature than we have seen with any other peptide tested by these methods. After intracerebroventricular injection, 125I-ADM exited the brain with the bulk reabsorption of cerebrospinal fluid at an efflux rate comparable to that of albumin. Although there was no blood-to-brain saturation, in situ brain perfusion of 125I-ADM in blood-free physiological buffer showed self-inhibition by excess unlabeled ADM. This, along with evidence of the lack of protein binding shown by capillary zone electrophoresis, indicated competition for the binding site of ADM at the BBB. The low lipophilicity of ADM determined by the octanol/buffer partition coefficient was also consistent with the prominent reversible association of ADM with the vasculature of the BBB. This suggests a function for ADM at the cerebral blood vessels, such as altering cerebral blood flow and perfusion, without disruption of the BBB. 相似文献
15.
Kim KS 《International journal for parasitology》2006,36(5):607-614
A major contributing factor to high mortality and morbidity associated with CNS infection is the incomplete understanding of the pathogenesis of this disease. Relatively small numbers of pathogens account for most cases of CNS infections in humans, but it is unclear how such pathogens cross the blood-brain barrier (BBB) and cause infections. The development of the in vitro BBB model using human brain microvascular endothelial cells has facilitated our understanding of the microbial translocation of the BBB, a key step for the acquisition of CNS infections. Recent studies have revealed that microbial translocation of the BBB involves host cell actin cytoskeletal rearrangements, most likely as the result of specific microbial-host interactions. A better understanding of microbial-host interactions that are involved in microbial translocation of the BBB should help in developing new strategies to prevent CNS infections. This review summarises our current understanding of the pathogenic mechanisms involved in translocation of the BBB by meningitis-causing bacteria, fungi and parasites. 相似文献
16.
Reynold Spector 《Neurochemical research》1987,12(9):791-796
The unidirectional influx of hypoxanthine across cerebral capillaries, the anatomical locus of the blood=brain barrier, was measured with an in situ rat brain perfusion technique employing [3H]hypoxanthine. Hypoxanthine was transported across the blood-brain barrier by a saturable system with a one-half saturation concentration of approximately 0.4 mM. The permeability-surface area product was 3×10–4 sec–1 with a hypoxanthine concentration of 0.02 M in the perfusate. Adenine (4 mM) and uracil and theophylline (both 10 mM), but not inosine (10 mM) or leucine (1 mM), inhibited hypoxanthine transfer through the blood-brain barrier. Thus, hypoxanthine is transported through the blood-brain barrier by a high-capacity, saturable transport system with a half-saturation concentration about 100 times the plasma hypoxanthine concentration. Although involved in the transport hypoxanthine from blood into brain, this system is not powerful enough to transfer important quantities of hypoxanthine from blood into brain. 相似文献
17.
Dr. Reynold Spector 《Neurochemical research》1988,13(8):785-787
The unidirectional transport of [3H]myo-inositol across cerebral capillaries, the anatomical locus of the blood-brain barrier, was measured using an in situ rat brain perfusion technique. Myo-inositol was transported across the blood-brain barrier by a low capacity, saturable system with a one-half saturation concentration of 0.1 mM. The permeability surface-area product was 6.2×10–5S–1 with a myo-inositol concentration of 0.02 mM in the perfusate. The myo-inositol stereoisomer scyllo-inositol but not (+)-chiro-inositol (both 1 mM) inhibited myo-inositol transfer through the blood-brain barrier. These observations provide evidence that myo-inositol is transferred through the blood-brain barrier by simple diffusion and a stereospecific, saturable transport system. 相似文献
18.
The blood-brain barrier (BBB) provides significant protection against microbial invasion of the brain. However, the BBB is not impenetrable, and mechanisms by which viruses breach it are becoming clearer. In vivo and in vitro model systems are enabling identification of host and viral factors contributing to breakdown of the unique BBB tight junctions. Key mechanisms of tight junction damage from inside and outside cells are disruption of the actin cytoskeleton and matrix metalloproteinase activity, respectively. Viral proteins acting in BBB disruption are described for HIV-1, currently the most studied encephalitic virus; other viruses are also discussed. 相似文献
19.
Reynold Spector 《Neurochemical research》1987,12(1):27-31
The unidirectional influx of niacinamide across cerebral capillaries, the anatomical locus of the blood-brain barrier, was measured with an in situ rat brain perfusion technique employing [14C]niacinamide. Niacinamide was transported rapidly across the blood-brain barrier by a system that was not saturable with 10 mM niacinamide in the perfusate. However, with periods of perfusion longer than 30 seconds, there was substantial backflow of [14C]niacinamide into the perfusate. Niacinamide (1.7 M) transport through the blood-brain barrier was not significantly inhibited by 3-acetylpyridine. Thus, niacinamide is transported rapidly and bidirectionally through the blood-brain barrier by a high capacity transport system. Although involved in the transfer of niacinamide between blood and brain, this transport system does not play an important regulatory role in the synthesis of NMN, NAD, and NADP from niacinamide in brain. 相似文献
20.
J M Lefauconnier 《Reproduction, nutrition, development》1989,29(6):689-702
The existence of the blood-brain barrier is due to tight junctions between endothelial cells preventing the passage of liquid and solute material at the capillary level. Substances can thus pass across the blood-brain barrier if they are lipophilic or if they have transport systems in the membranes of endothelial cells. The luminal membrane brings metabolites needed for the brain function, the abluminal one plays an important part in removing substances from brain, this can happen against a concentration gradient and thus needs energy. Ions are transported differently by the 2 membranes. Sodium and chloride have carriers and potassium is transported very actively by the sodium-potassium ATPase of the abluminal membrane. Blood-brain glucose influx is very important and happens by carrier transport at the 2 membranes. Efflux seems to use the same transport system as the influx. Transport of ketone bodies seems to happen only from blood to brain, the carriers being reversibly used for brain-blood transport of pyruvic and lactic acid. Amino-acid transport is very different on the luminal and abluminal membranes. On the luminal membrane there are 2 transport systems, one for basic amino acids, the other one, the L system, for neutral amino-acids. All neutral amino-acids are transported through the abluminal membrane by the L, A and ASC systems. There exists a system of transport for basic amino-acids, and a very active one for acid amino-acids. Some systems for the transport of hormones, vitamins and for some peptides exist also at the blood-brain barrier which thus plays a very important role in the regulation of brain metabolism. 相似文献