首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Dicarboxyclic acid transport system in Bacillus subtilis   总被引:5,自引:0,他引:5  
Ghei OK  Kay WW 《FEBS letters》1972,20(2):137-140
  相似文献   

2.
Exponentially growing cells of Bacillus subtilis demonstrated inducible protection against killing by hydrogen peroxide when prechallenged with a nonlethal dose of this oxidative agent. Cells deficient in a functional recE+ gene product were as much as 100 times more sensitive to the H2O2 but still exhibited an inducible protective response. Exposure to hydrogen peroxide also induced the recE(+)-dependent DNA damage-inducible (din) genes, the resident prophage, and the product of the recE+ gene itself. Thus hydrogen peroxide is capable of inducing the SOS-like or SOB system of B. subtilis. However, the induction of this DNA repair system by other DNA-damaging agents is not sufficient to activate the protective response to hydrogen peroxide. Therefore, at least one more regulatory network (besides the SOB system) that responds to oxidative stress must exist. Furthermore, the data presented indicate that a functional catalase gene is necessary for this protective response.  相似文献   

3.
The complex interrelationships between the transport of inorganic cations and C4 dicarboxylate were examined using mutants defective in potassium transport and retention, divalent cation transport, or phosphate transport. The potassium transport system, studied using 86Rb+ as a K+ analogue, kinetically appeared as a single system (Km 200 microM for Rb+, Ki 50 microM for K+), the activity of which was only slightly reduced in K+ retention mutants. Divalent cation transport, studied using 54Mn2+, 60Co2+, and 45Ca2+, was more complex being represented by at least two systems, one with a high affinity for Mn2+ (Km 2.5 microM) and a more general one of low affinity (Km 1.3-10 mM) for Mg2+, Mn2+, Ca/2+, and Co2+. Divalent cation transport was repressed by Mg2+, derepressed in K+ retention mutants, and defective in Co2+-resistant mutants. Phosphate was required for both divalent cation and succinate transport, and phosphate transport mutants (arsenate resistant) were found to be defective in both divalent cation and succinate transport. Divalent cations, especially Mg2+ and Co2+, decreased Km for succinate transport approximately 20-fold over that achieved with K+; neither cation was required stoichiometrically for succinate transport. The loss of divalent cation transport in cobalt-resistant mutants has been correlated with the loss of a 55,000 molecular weight membrane protein. Similarly, the loss of phosphate transport in arsenate-resistant mutants has been correlated with the loss of a 35,000 molecular weight membrane component.  相似文献   

4.
The transport of succinate was studied in bacteroids of an effective, streptomycin-resistant strain (GF160) of Rhizobium leguminosarum. High levels of succinate transport occurred, and the kinetics, specificity, and sensitivity to metabolic inhibitors were similar to those previously described for free-living cells. The symbiotic properties of two transposon (Tn5)-mediated C4-dicarboxylate transport mutants (strains GF31 and GF252) were determined. Strain GF31 formed ineffective nodules, and bacteroids from these nodules showed no succinate transport activity. Strain GF252 formed partially effective nodules, and bacteroids from these nodules showed about 50% of the succinate transport activity of the parent bacteroids. Another dicarboxylic acid transport mutant (Dct-), strain GFS5, isolated after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis, formed ineffective nodules. The ability to form ineffective nodules in strains GF31 and GFS5 was shown to correlate with the Dct- phenotype. The data indicate that the presence of a functional C4-dicarboxylic acid transport system is essential for N2 fixation to occur in pea nodules.  相似文献   

5.
DNA repair in Bacillus subtilis. I. The presence of an inducible system.   总被引:14,自引:0,他引:14  
Summary Following UV irradiation of Bacillus subtilis there is a coordinate induction of: 1) a new protein, 2) a W-reactivation system, 3) a DNA modification system, and 4) prophages. These functions are induced following UV irradiation of repair proficient bacteria and mutants deficient in excision repair (uvr-1) and DNA polymerase I activity (polA5). However, they are not induced, or are impaired in their ability to be induced in bacteria containing the recA1 and the recG13 mutations. This inducible system is compared to the SOS system observed in E. coli.  相似文献   

6.
l-Tyrosine and l-phenylalanine enter cells of Bacillus subtilis via a system of active transport that exhibits complex kinetic behavior. The specificity of the transport system was characterized both at low concentrations of transport substrate (where affinity for l-tyrosine or l-phenylalanine is high but capacity is low) and at high concentrations (where affinity is low but capacity is high). Specificity was not found to differ significantly as a function of either l-tyrosine or l-phenylalanine concentration. Kinetic analysis showed that the relationship between the uptake of l-phenylalanine and l-tyrosine is strictly competitive. Neither l-tyrosine nor l-phenylalanine uptake was competitively inhibited by other naturally occurring l-amino acids, indicating the importance of the phenyl side chain to uptake specificity. Hence, it is concluded that l-tyrosine and l-phenylalanine are transported by a common system that is specific for these two amino acids. The abilities of analogue derivatives of l-tyrosine and l-phenylalanine to inhibit the uptake of l-[(14)C]tyrosine and l-[(14)C]phenylalanine competitively were determined throughout a wide range of substrate and inhibitor concentrations. In this manner, the contributions of the side chain, the alpha-amino group and the carboxyl group to uptake specificity were established. It is concluded that the positively charged alpha-amino group contributes more significantly to uptake specificity than does the negatively charged carboxyl group. The recognition of a phenyl ring is an essential feature of specificity; other amino acids with aromatic side chains, such as the indole and imidazole rings of l-tryptophan and l-histidine, do not compete with l-tyrosine and l-phenylalanine for uptake. The presence of the p-hydroxy substitutent in the side chain (as in l-tyrosine) enhances the uptake of the aryl amino acid analogues investigated.  相似文献   

7.
Bacillus subtilis cells grown in yeast extract medium accumulated 3-fluoro-l-erythro-[1,2-(14)C(2)]malate more than 30-fold from the surrounding medium. No metabolic products derived from 3-fluoro-l-erythro-malate could be detected in these cells. l-Malate competitively inhibited transport of 3-fluoro-l-erythro-malate. This malate analogue was itself a competitive inhibitor of l-malate uptake. Cells that had been grown in yeast extract supplemented with 5 mM l-malate showed a 10-fold increased affinity towards 3-fluoro-l-erythro-malate relative to cells grown in yeast extract medium with no added malate. Our results suggest that two transport systems for l-malate can be induced in B. subtilis. The first of these systems seems to effect uptake of C(4)-dicarboxylates (l-malate, succinate, and fumarate) in yeast extract medium. The second transport system (or possibly a modification of the first transport system) seems to be induced by addition of l-malate to this medium and is also functioning in malate minimal medium.  相似文献   

8.
Y P Wang  K Birkenhead  B Boesten  S Manian  F O'Gara 《Gene》1989,85(1):135-144
The genes controlling the transport of C4-dicarboxylic acids from Rhizobium meliloti have been cloned and analysed. The nucleotide sequence of the control region of the structural dctA and the regulatory dctBD genes has been determined. Comparison with the Rhizobium leguminosarum dct genes revealed a high degree of homology. Gene fusions to the enteric lacZY reporter gene were constructed and the expression of the dctA and dctBD genes studied under various physiological conditions. In free-living cells, the regulatory dctBD genes are absolutely required for the expression of the dctA gene. In the root nodule environment, a dctA::lacZY gene fusion was found to be expressed in an R. meliloti strain mutated in both the dctB and dctD genes, but not in a strain mutated in the dctB gene alone. The presence of the conserved upstream NifA-binding sites on the dctA promoter sequence, coupled with the fact that the dctA::lacZY gene fusion is not expressed in root nodules formed by a nifA mutant strain of R. meliloti, supports the suggestion that NifA may be involved in the symbiotic expression of dctA in the absence of the regulatory dctBD genes. Under micro-aerobic conditions, however, NifA induction alone is not sufficient for expression of the dctA promoter, even though the NifA-dependent nifHDK promoter is highly expressed under these conditions.  相似文献   

9.
The SOS-like system of Bacillus subtilis consists of several coordinately induced phenomena (e.g., cellular filamentation, prophage induction, and Weigle reactivation of UV-damaged bacteriophage) which are expressed after cellular insult such as DNA damage or inhibition of DNA replication. Mutagenesis of the bacterial chromosome and the development or maintenance of competence also appear to be involved in the SOS-like response in this bacterium. The genetic characterization of the SOS-like system has involved an analysis of (i) the effects of various DNA repair mutations on the expression of inducible phenomena and (ii) the tsi-23 mutation, which renders host strains thermally inducible for each of the SOS-like functions. Bacterial filamentation was unaffected by any of the DNA repair mutations studied. In contrast, the induction of prophage after thermal or UV pretreatment was abolished in strains carrying the recE4, recA1, recB2, or recG13 mutation. The Weigle reactivation of UV-damaged bacteriophage was also inhibited by the recE4, recA1, recB2, or recG13 mutation, whereas levels of Weigle reactivation were lower in strains which carried the uvrA42, polA5, or rec-961 mutation than in the DNA repair-proficient strain. Strains which carried the recE4 mutation were incapable of chromosomal DNA-mediated transformation, and the frequency of this event was decreased in strains carrying the recA1, recB2, or tsi-23 mutation. Plasmid DNA transformation efficiency was decreased only in strains carrying the tsi-23 mutation in addition to the recE4, recA1, or recB2 mutation. The results indicate that the SOS-like system of B. subtilis is regulated at different levels by two or more gene products. In this report, the current data regarding the genetic regulation of inducible phenomena are summarized, and a model is proposed to explain the mechanism of SOS-like induction in B. subtilis.  相似文献   

10.
Membrane vesicles isolated from Bacillus subtilis W23 catalyze active transport of the C4 dicarboxylic acids L-malate, fumarate, and succinate under aerobic conditions in the presence of the electron donor reduced beta-nicotinamide adenine dinucleotide or the non-physiological electron donor system ascorbate-phenazine methosulfate. The dicarboxylic acids are accumulated in unmodified form. Inhibitors of the respiratory chain, sulfhydryl reagents, and uncoupling agents inhibit the accumulation of the dicarboxylic acids. The affinity constants for transport of L-malate, fumarate, and succinate are 13.5, 7.5, and 4.3 muM, respectively; these values are severalfold lower than those reported previously for whole cells. Active transport of these dicarboxylic acids occurs via one highly specific transport system as is indicated by the following observations. (i) Each dicarboxylic acid inhibits the transport of the other two dicarboxylic acids competitively. (ii) The affinity constants determined for the inhibitory action are very similar to those determined for the transport process. (iii) Each dicarboxylic acid exchanges rapidly with a previously accumulated dicarboxylic acid. (iv) Other metabolically and structurally related compounds do not inhibit transport of these dicarboxylic acids significantly, except for L-aspartate and L-glutamate. However, transport of these dicarboxylic amino acids is mediated by independent system because membrane vesicles from B. subtilis 60346, lacking functional dicarboxylic amino acid transport activity, accumulate the C4 dicarboxylic acids at even higher rates than vesicles from B. subtilis W 23. (v) A constant ratio exists between the initial rates of transport of L-malate, fumarate, and succinate in all membrane vesicle preparations isolated from cells grown on various media. This high-affinity dicarboxylic acid transport system seems to be present constitutively in B. subtilis W23.  相似文献   

11.
12.
13.
14.
The transport of fructose in Bacillus subtilis was studied in various mutant strains lacking the following activities: ATP-dependent fructokinase (fruC), the fructose 1-phosphate kinase (fruB) the phosphofructokinase (pfk), the enzyme I of the phosphoenolpyruvate phosphotransferase system (the thermosensitive mutation ptsI1), and a transport activity (fruA). Combinations of these mutations indicated that the transport of fructose in Bacillus subtilis is tightly coupled to its phosphorylation either in fructose 1-phosphate, identified in vivo and in vitro or in fructose 6-phosphate identified by indirect lines of evidence. These steps of fructose metabolism were shown to depend on the activity of the enzyme I of the phosphoenolpyruvate phosphotransferase systems. The fruA mutations affect the transport of fructose when the bacteria are submitted to catabolite repression. The mutations were localized on the chromosome of Bacillus subtilis in a cluster including the fruB gene. When grown in a medium supplemented by a mixture of potassium glutamate and succinate the fruA mutants are able to carry on the two vectorial metabolisms generating fructose 6-phosphate as well as fructose 1-phosphate. A negative search of strictly negative transport mutants in fruA strains indicated that more than two structural genes are involved in the transport of fructose.  相似文献   

15.
16.
Features of the transport system for hydroxyproline in a strain of Pseudomonas putida were studied. A mutant, lacking hydroxyproline-2 epimerase and unable to metabolize hydroxy-l-proline, was shown to transport and accumulate this compound after induction. Both entry and exit rates were examined, and kinetic constants for the reaction were determined. Increasing the induction time from 0.5 to 3 hr increased the entry rate three- to fourfold but had only a small and variable effect on the exit rate. Entry followed saturation kinetics. For hydroxy-l-proline, the K(m) and V(max) values were found to be 3 x 10(-5)m and 6 mumoles per g (dry weight) per min, respectively. The K(m) and V(max) for the epimer allohydroxy-d-proline were 10(-3)m and 0.1 mumole per g (dry weight) per min. Entry rates into "loaded" and "unloaded" cells were found to be the same. Exit was shown to be first order over the range of internal substrate concentrations measured. Exit rates were measured by several different methods and found to be independent of external substrate concentration. The first-order exit rate constant was computed to be 0.23 min(-1). Several metabolic inhibitors were examined for their effect on transport. The inhibitory action of N-ethyl maleimide was shown to be greatly reduced if cells were allowed to accumulate hydroxy-l-proline before exposure to the inhibitor. A number of other amino acids interfered with the transport of hydroxy-l-proline; the greatest effect was produced by l-alanine and l-proline.  相似文献   

17.
An osmolarity-sensitive promoter fragment, P23423, isolated from Bacillus subtilis was characterized. The expression of β-galactosidase (β-Gal) driven by P23423 was regulated by osmolarity both in Escherichia coli and B. subtilis. The classical conserved region of this prokaryotic promoter was found within the sequence of the cloned fragment, and the putative promoter was identified as the control element of RNA not coding for protein (a RNA molecule that is not translated into a protein). The efficiency and benefit of this promoter was further demonstrated via osmolarity-induced expression of three other heterologous proteins in E. coli. Thus, this approach provided a simple and inexpensive inducible promoter element for the expression of cloned genes.  相似文献   

18.
19.
The azlB locus of Bacillus subtilis was defined previously by a mutation conferring resistance to a leucine analog, 4-azaleucine (J. B. Ward, Jr., and S. A. Zahler, J. Bacteriol. 116:727-735, 1973). In this report, azlB is shown to be the first gene of an operon apparently involved in branched-chain amino acid transport. The product of the azlB gene is an Lrp-like protein that negatively regulates expression of the azlBCDEF operon. Resistance to 4-azaleucine in azlB mutants is due to overproduction of AzlC and AzlD, two novel hydrophobic proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号