首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Between 1980 and 1985, Czechoslovakia had experienced 4 and the USSR 3 major influenza outbreaks. Of the 3 epidemic outbreaks in the USSR, 2 were associated with influenza B virus (in the 1980/81 and 1983/84 seasons) and 1 with influenza A virus of the H3N2 subtype. In the USSR, influenza A (H1N1) virus never predominated as a cause of epidemic during the 5 years period. In Czechoslovakia, 2 epidemics (in the 1980/81 and 1983/84 seasons) were due to influenza A (H1N1) virus. The epidemic in the 1981/82 season had two waves of unequal heights and a mixed type B and subtype A (H3N2) etiology; a two-wave epidemic associated with isolates of influenza A (H1N1) and influenza B viruses was also recorded in the 1983/84 season. The influenza A (H3N2) epidemic in 1983 was of explosive character. All influenza viruses circulating in the two countries between 1980 and 1985 were of the same antigenic profile, but were isolated from the epidemics that occurred in different influenza seasons. The virological surveillance revealed strains of virus closely related to drift variants detected from outbreaks in 1977-1979 and the new variants A/Chile 1/83, A/Philippines 2/82, A/Caen 1/84 and B/USSR 100/83.  相似文献   

2.
The data on the spread of influenza A and B in the autumn and winter of 1985-1986 are given. Three epidemics caused by all presently circulating viruses, B, A (H3N2) and A (H1N1), were registered in the USSR. Of these, the greatest one was the epidemic of influenza B; morbidity rate among the adult population during this epidemic was at the level with the morbidity rate characteristic of the epidemics registered at the period of 1962-1972, and morbidity rate among children, especially school children, was even higher.  相似文献   

3.
The authors analyze the findings of epidemiological and virological surveillance of ARD in Bohemia during the season 1986/1987. In all, 57.5% of the Czech population was affected by acute respiratory disease (ARD). There were 5,950,832 cases reported, 124,444 complications (2.1% of the overall morbidity rate) and 5,374 deaths due to influenza, bronchitis, pneumonia and chronic pulmonary affection. The influenza epidemic commenced during the 48-th calendary week (CW) and lasted 5 weeks till the 52-nd CW. The epidemic was due to an influenza virus strain of the subtype A(H1N1) antigenically related to the drift variant A (Singapore) 6/86. Within an extremely short period of the epidemic, 1,094,865 influenza cases were reported and 22,313 cases of complications. 10.7% of the CSR population were affected during the epidemic in whose etiology noninfluenza respiratory viruses were significantly implicated, especially adenoviruses (41.7%) and the RS virus (26.9%). There was no excessive mortality in the course of the epidemic. The authors discuss the atypical nature of this particular influenza epidemic and the etiological role of respiratory viruses.  相似文献   

4.
A comparison of the evolutionary tree of new influenza A (H1N1) viruses to that of old H1N1 viruses which disappeared in 1957 was performed. The evolutionary trees of the hemagglutinin (HA) molecule based on amino acid sequences of the HA1 polypeptide were constructed with old and new H1N1 viruses isolated from 1947 to 1957 and 1986 to 2000, respectively. The evolutionary history of recent H1N1 viruses was similar to that of old H1N1 viruses just before the disappearance in two respects. Firstly, both viruses did not originate from the viruses of the previous H1N1 epidemic season but originated from the viruses branched off at the same point on the mainstream stem as the viruses of two H1N1 epidemic seasons earlier. Secondly, recent H1N1 viruses mainly circulating in Japan have a deletion at amino acid residue 134, located close to residue 131, which was deleted in old H1N1 viruses at the time of the disappearance. However, different from the evolutionary history of old H1N1 viruses, in the 1999/2000 H1N1 epidemic season, the H1N1 viruses which were located on the same lineage as the previous epidemic viruses were also isolated sporadically in Japan.  相似文献   

5.
The community surveillance of respiratory virus infections performed during 1985-1987 in Sendai and 1988-1990 in Yamagata has identified a total of five herald waves of influenza virus infections: A/H3N2 virus infections in 1985 and 1989, A/H1N1 virus infections in 1986 and 1988, and type B virus infections in 1989. To investigate the antigenic and genetic relationships between the herald wave and epidemic strains, influenza A/H1N1 viruses isolated during the 1986 and 1988 herald waves were compared with those isolated during the 1986-1987 and 1988-1989 epidemic seasons, respectively, utilizing hemagglutination inhibition tests with anti-hemagglutinin monoclonal antibodies and oligonucleotide mapping of total viral RNAs. The results showed that multiple variants differing in antigenic and genetic properties were cocirculating during the 1986 herald wave as well as during each of the two epidemics (only one strain was isolated in the 1988 herald wave). It was also observed that viruses which had the antigenic and/or genetic characteristics closely similar to those of the viruses circulating in the 1986 and 1988 herald waves, were isolated during the winters of 1986-1987 and 1988-1989, respectively.  相似文献   

6.
The complete nucleotide sequences of the NS genes from three human influenza viruses, A/FM/1/47 (H1N1), A/FW/1/50 (H1N1), and A/USSR/90/77 (H1N1), were determined. Only five single-base differences were found within the sequences of the A/FW/1/50 and A/USSR/90/77 NS genes, thus confirming earlier data suggesting that the 1977 H1N1 viruses are closely related to virus strains that were circulating around 1950. Comparison of all three sequences with those from A/PR/8/34 and A/Udorn/72 viruses illustrates that these genes (with the exception of that of the A/USSR/90/77 strain) evolve through cumulative base changes along a single common lineage. A nucleotide sequence variation of approximately 2.2 to 3.4% per 10 years was determined for the NS gene segments. Extensive size variation was also observed among the NS1 proteins of the various human viruses. The A/FM/1/47 NS1 protein, which consists of 202 amino acids, is 15% shorter than the A/Udorn/72 NS1 protein, which consists of 237 amino acids.  相似文献   

7.
Antigenic analogues of all known epidemic human viruses (H1, H2 and H3) have been isolated from natural sources in the USSR. A 5 to 25-year persistence of genes coding haemagglutinins of these viruses in the genome structures of natural populations of viruses have been established. The viruses are more commonly isolated from water birds (ducks, gulls, terns, coots, shelducks, sandpipers), and the circulation of influenza viruses in nature among pigeons, crows, chickens and other birds have been identified. The viruses have been also isolated from bats, whales, squirrels, deer, fishes and lake water. The exchange between the genofond of natural populations of influenza A viruses and epidemic influenza viruses is discussed.  相似文献   

8.
To determine the role of the pandemic influenza A/H1N1 2009 (A/H1N1 2009pdm) in acute respiratory tract infections (ARTIs) and its impact on the epidemic of seasonal influenza viruses and other common respiratory viruses, nasal and throat swabs taken from 7,776 patients with suspected viral ARTIs from 2006 through 2010 in Beijing, China were screened by real-time PCR for influenza virus typing and subtyping and by multiplex or single PCR tests for other common respiratory viruses. We observed a distinctive dual peak pattern of influenza epidemic during the A/H1N1 2009pdm in Beijing, China, which was formed by the A/H1N1 2009pdm, and a subsequent influenza B epidemic in year 2009/2010. Our analysis also shows a small peak formed by a seasonal H3N2 epidemic prior to the A/H1N1 2009pdm peak. Parallel detection of multiple respiratory viruses shows that the epidemic of common respiratory viruses, except human rhinovirus, was delayed during the pandemic of the A/H1N1 2009pdm. The H1N1 2009pdm mainly caused upper respiratory tract infections in the sampled patients; patients infected with H1N1 2009pdm had a higher percentage of cough than those infected with seasonal influenza or other respiratory viruses. Our findings indicate that A/H1N1 2009pdm and other respiratory viruses except human rhinovirus could interfere with each other during their transmission between human beings. Understanding the mechanisms and effects of such interference is needed for effective control of future influenza epidemics.  相似文献   

9.
D. W. Boucher  G. Contreras  J. Furesz 《CMAJ》1979,120(7):799-802,831
The persistence of serum antibodies 1 year after immunization with a bivalent vaccine containing recombinant viruses that were antigenically identical with A/Victoria/3/75 (H3N2) and A/New Jersey/8/76 (Hsw1N1) viruses was measured in 128 persons aged 18 to 65 years. Serum samples were tested with the hemagglutination inhibition assay against the two vaccine antigens and against A/Texas/1/77 (H3N2) and A/USSR/90/77 (H1N1) viruses. Prior to vaccination 56% and 79% of the participants had been found to be seronegative to A/Victoria and A/New Jersey antigens respectively; the geometric mean antibody titres were low (1:5 to 1:11) except in persons aged 51 to 65 years, whose mean titre of antibody to the A/New Jersey antigen was 1:23, and persons aged 26 to 35 years, whose mean titre of antibody to the A/USSR antigen was 1:25. By 3 weeks after vaccination 85% of the seronegative persons had a fourfold or greater rise in titres of antibodies to the viruses in the vaccine, and 70% had a fourfold increase in titre of antibody to the A/Texas antigen. Of the persons aged 26 to 35 years (seronegative and seropositive) 68% had a fourfold or greater increase in titre of antibody to the A/USSR antigen. There was no change in the mean titres of 19 unvaccinated control subjects during the observation period. At 6 and 12 months after vaccination the titres of antibodies to the A/Victoria and A/New Jersey antigens had declined moderately in all age groups from those observed 3 weeks after vaccination. The rate of decline was similar for the various antibodies except that to the A/USSR antigen in persons 26 to 35 years of age, in whom the decline was much slower.  相似文献   

10.
The work deals with the peculiarities of the spread of influenza A/USSR77 (H1N1) in the USSR and in the world. The authors point out that the most outstanding feature of the epidemic in the USSR was low morbidity rate among adults, persons aged up to 25 years being most affected. This suggests the existence of prolonged (up to 20 years) post-influenza immunity. The results of the mathematical pronostication of this epidemic for the territory of the USSR were analyzed and and found to be quite satisfactory for the majority of cities.  相似文献   

11.
The evolution and population dynamics of human influenza in Taiwan is a microcosm of the viruses circulating worldwide, which has not yet been studied in detail. We collected 343 representative full genome sequences of human influenza A viruses isolated in Taiwan between 1979 and 2009. Phylogenetic and antigenic data analysis revealed that H1N1 and H3N2 viruses consistently co-circulated in Taiwan, although they were characterized by different temporal dynamics and degrees of genetic diversity. Moreover, influenza A viruses of both subtypes underwent internal gene reassortment involving all eight segments of the viral genome, some of which also occurred during non-epidemic periods. The patterns of gene reassortment were different in the two subtypes. The internal genes of H1N1 viruses moved as a unit, separately from the co-evolving HA and NA genes. On the other hand, the HA and NA genes of H3N2 viruses tended to segregate consistently with different sets of internal gene segments. In particular, as reassortment occurred, H3HA always segregated as a group with the PB1, PA and M genes, while N2NA consistently segregated with PB2 and NP. Finally, the analysis showed that new phylogenetic lineages and antigenic variants emerging in summer were likely to be the progenitors of the epidemic strains in the following season. The synchronized seasonal patterns and high genetic diversity of influenza A viruses observed in Taiwan make possible to capture the evolutionary dynamic and epidemiological rules governing antigenic drift and reassortment and may serve as a “warning” system that recapitulates the global epidemic.  相似文献   

12.

Background

The 2009 H1N1 influenza pandemic caused offseason peaks in temperate regions but coincided with the summer epidemic of seasonal influenza and other common respiratory viruses in subtropical Hong Kong. This study was aimed to investigate the impact of the pandemic on age-specific epidemic curves of other respiratory viruses.

Methods

Weekly laboratory-confirmed cases of influenza A (subtypes seasonal A(H1N1), A(H3N2), pandemic virus A(H1N1)pdm09), influenza B, respiratory syncytial virus (RSV), adenovirus and parainfluenza were obtained from 2004 to 2013. Age-specific epidemic curves of viruses other than A(H1N1)pdm09 were compared between the pre-pandemic (May 2004 – April 2009), pandemic (May 2009 – April 2010) and post-pandemic periods (May 2010 – April 2013).

Results

There were two peaks of A(H1N1)pdm09 in Hong Kong, the first in September 2009 and the second in February 2011. The infection rate was found highest in young children in both waves, but markedly fewer cases in school children were recorded in the second wave than in the first wave. Positive proportions of viruses other than A(H1N1)pdm09 markedly decreased in all age groups during the first pandemic wave. After the first wave of the pandemic, the positive proportion of A(H3N2) increased, but those of B and RSV remained slightly lower than their pre-pandemic proportions. Changes in seasonal pattern and epidemic peak time were also observed, but inconsistent across virus-age groups.

Conclusion

Our findings provide some evidence that age distribution, seasonal pattern and peak time of other respiratory viruses have changed since the pandemic. These changes could be the result of immune interference and changing health seeking behavior, but the mechanism behind still needs further investigations.  相似文献   

13.

Background

The influenza A(H1N1)2009 virus has been the dominant type of influenza A virus in Finland during the 2009–2010 and 2010–2011 epidemic seasons. We analyzed the antigenic characteristics of several influenza A(H1N1)2009 viruses isolated during the two influenza seasons by analyzing the amino acid sequences of the hemagglutinin (HA), modeling the amino acid changes in the HA structure and measuring antibody responses induced by natural infection or influenza vaccination.

Methods/Results

Based on the HA sequences of influenza A(H1N1)2009 viruses we selected 13 different strains for antigenic characterization. The analysis included the vaccine virus, A/California/07/2009 and multiple California-like isolates from 2009–2010 and 2010–2011 epidemic seasons. These viruses had two to five amino acid changes in their HA1 molecule. The mutation(s) were located in antigenic sites Sa, Ca1, Ca2 and Cb region. Analysis of the antibody levels by hemagglutination inhibition test (HI) indicated that vaccinated individuals and people who had experienced a natural influenza A(H1N1)2009 virus infection showed good immune responses against the vaccine virus and most of the wild-type viruses. However, one to two amino acid changes in the antigenic site Sa dramatically affected the ability of antibodies to recognize these viruses. In contrast, the tested viruses were indistinguishable in regard to antibody recognition by the sera from elderly individuals who had been exposed to the Spanish influenza or its descendant viruses during the early 20th century.

Conclusions

According to our results, one to two amino acid changes (N125D and/or N156K) in the major antigenic sites of the hemagglutinin of influenza A(H1N1)2009 virus may lead to significant reduction in the ability of patient and vaccine sera to recognize A(H1N1)2009 viruses.  相似文献   

14.
In France, the 2011–2012 influenza epidemic was characterized by the circulation of antigenically drifted influenza A(H3N2) viruses and by an increased disease severity and mortality among the elderly, with respect to the A(H1N1)pdm09 pandemic and post-pandemic outbreaks. Whether the epidemiology of influenza in France differed between the 2011–2012 epidemic and the previous outbreaks is unclear. Here, we analyse the age distribution of influenza like illness (ILI) cases attended in general practice during the 2011–2012 epidemic, and compare it with that of the twelve previous epidemic seasons. Influenza like illness data were obtained through a nationwide surveillance system based on sentinel general practitioners. Vaccine effectiveness was also estimated. The estimated number of ILI cases attended in general practice during the 2011–2012 was lower than that of the past twelve epidemics. The age distribution was characteristic of previous A(H3N2)-dominated outbreaks: school-age children were relatively spared compared to epidemics (co-)dominated by A(H1N1) and/or B viruses (including the 2009 pandemic and post-pandemic outbreaks), while the proportion of adults over 30 year-old was higher. The estimated vaccine effectiveness (54%, 95% CI (48, 60)) was in the lower range for A(H3N2) epidemics. In conclusion, the age distribution of ILI cases attended in general practice seems to be not different between the A(H3N2) pre-pandemic and post-pandemic epidemics. Future researches including a more important number of ILI epidemics and confirmed virological data of influenza and other respiratory pathogens are necessary to confirm these results.  相似文献   

15.
To determine the spatial and temporal dynamics of influenza A virus during a single epidemic, we examined whole-genome sequences of 284 A/H1N1 and 69 A/H3N2 viruses collected across the continental United States during the 2006-2007 influenza season, representing the largest study of its kind undertaken to date. A phylogenetic analysis revealed that multiple clades of both A/H1N1 and A/H3N2 entered and co-circulated in the United States during this season, even in localities that are distant from major metropolitan areas, and with no clear pattern of spatial spread. In addition, co-circulating clades of the same subtype exchanged genome segments through reassortment, producing both a minor clade of A/H3N2 viruses that appears to have re-acquired sensitivity to the adamantane class of antiviral drugs, as well as a likely antigenically distinct A/H1N1 clade that became globally dominant following this season. Overall, the co-circulation of multiple viral clades during the 2006-2007 epidemic season revealed patterns of spatial spread that are far more complex than observed previously, and suggests a major role for both migration and reassortment in shaping the epidemiological dynamics of human influenza A virus.  相似文献   

16.
The main nucleocapsid protein (NP) of human epidemic viruses was found to be cleaved via NP56----HP53 mol. wt. reduction in infected cells, while the NP of animal influenza viruses was refractory to analogous intracellular modification. Like animal influenza viruses, the strain A/Baku/799/82(H1N3) isolated from a sick child has been observed to exhibit the intracellular resistance of NP to intracellular proteolysis. The similar NP resistance has been revealed for A/New Jersey/8/76(H1N1) and A/seal/Massachusetts/81 (H7N7) viruses, which are able to induce only a sporadic human influenza viral infection. Thus, the results reveal a correlation between the viral strains epidemicity and intracellular cleavability of their NPs. The influenza viral strains epidemic for humans are characterized by cleavable NP, whereas the strains, which are known to induce the sporadic influenza human infection are found to exhibit the resistance of NP to intracellular proteolysis. It is reasonable to consider the phenomenon of NP56----NP53 proteolytic modification as a sign of viral strain epidemicity for humans.  相似文献   

17.
The emergence of influenza viruses resistant to existing classes of antiviral drugs raises concern and there is a need for novel antiviral agents that could be used therapeutically or prophylacticaly. Surfactant protein D (SP-D) belongs to the family of C-type lectins which are important effector molecules of the innate immune system with activity against bacteria and viruses, including influenza viruses. In the present study we evaluated the potential of recombinant porcine SP-D as an antiviral agent against influenza A viruses (IAVs) in vitro. To determine the range of antiviral activity, thirty IAVs of the subtypes H1N1, H3N2 and H5N1 that originated from birds, pigs and humans were selected and tested for their sensitivity to recombinant SP-D. Using these viruses it was shown by hemagglutination inhibition assay, that recombinant porcine SP-D was more potent than recombinant human SP-D and that especially higher order oligomeric forms of SP-D had the strongest antiviral activity. Porcine SP-D was active against a broad range of IAV strains and neutralized a variety of H1N1 and H3N2 IAVs, including 2009 pandemic H1N1 viruses. Using tissue sections of ferret and human trachea, we demonstrated that recombinant porcine SP-D prevented attachment of human seasonal H1N1 and H3N2 virus to receptors on epithelial cells of the upper respiratory tract. It was concluded that recombinant porcine SP-D holds promise as a novel antiviral agent against influenza and further development and evaluation in vivo seems warranted.  相似文献   

18.
The 1957 and 1968 human pandemic influenza A virus strains as well as duck viruses possess sialidase activity under low-pH conditions, but human H3N2 strains isolated after 1968 do not possess such activity. We investigated the transition of avian (duck)-like low-pH stability of sialidase activities with the evolution of N2 neuraminidase (NA) genes in human influenza A virus strains. We found that the NA genes of H3N2 viruses isolated from 1971 to 1982 had evolved from the side branches of NA genes of H2N2 epidemic strains isolated in 1968 that were characterized by the low-pH-unstable sialidase activities, though the NA genes of the 1968 pandemic strains preserved the low-pH-stable sialidase. These findings suggest that the prototype of the H3N2 epidemic influenza strains isolated after 1968 probably acquired the NA gene from the H2N2 low-pH-unstable sialidase strain by second genetic reassortment in humans.  相似文献   

19.
Feng  Zhaomin  Zhu  Wenfei  Yang  Lei  Liu  Jia  Zhou  Lijuan  Wang  Dayan  Shu  Yuelong 《中国病毒学》2021,36(1):43-51
Eurasian avian-like H1 N1(EA H1 N1) swine influenza virus(SIV) outside European countries was first detected in Hong Kong Special Administrative Region(Hong Kong, SAR) of China in 2001. Afterwards, EA H1 N1 SIVs have become predominant in pig population in this country. However, the epidemiology and genotypic diversity of EA H1 N1 SIVs in China are still unknown. Here, we collected the EA H1 N1 SIVs sequences from China between 2001 and 2018 and analyzed the epidemic and phylogenic features, and key molecular markers of these EA H1 N1 SIVs. Our results showed that EA H1 N1 SIVs distributed in nineteen provinces/municipalities of China. After a long-time evolution and transmission, EA H1 N1 SIVs were continuously reassorted with other co-circulated influenza viruses, including 2009 pandemic H1 N1(A(H1 N1)pdm09), and triple reassortment H1 N2(TR H1 N2) influenza viruses, generated 11 genotypes. Genotype 3 and 5, both of which were the reassortments among EA H1 N1, A(H1 N1)pdm09 and TR H1 N2 viruses with different origins of M genes, have become predominant in pig population. Furthermore, key molecular signatures were identified in EA H1 N1 SIVs. Our study has drawn a genotypic diversity image of EA H1 N1 viruses, and could help to evaluate the potential risk of EA H1 N1 for pandemic preparedness and response.  相似文献   

20.
As indicated by the results of the hemagglutination inhibition (HAI) test, influenza viruses A/Leningrad/80 contain hemagglutinin (HA), similar to that of virus A/Singapore/1/57 (H2N2). Neuraminidase contained in viruses A/Leningrad/80 belongs to serological subtype N2 and is similar to that of virus A/Singapore/1/57 (H2N2). No differences in the polypeptide composition of the virus-induced proteins of viruses A/Leningrad/527/80, A/Leningrad/549/80, A/Leningrad/553/80 and virus A/Singapore/1/57 used as reference have been detected in the study of their electrophoretic mobility in polyacrylamide gel, as well as the mobility of duplexes obtained by the hybridization of the virion and complement RNA of viruses A/Leningrad/553/80 and A/Singapore/1/57. The results of the HAI test with antisera to purified HA indicate that virus A/Leningrad/549/80 contains HA similar to that of viruses A(H2N2) isolated in 1957, but not in 1964. The HAI test with the sera of polecats having the infection permits the differentiation of viruses A/Leningrad/80 from epidemic viruses A(H2N2) isolated in 1957-1965, including reference virus A/Singapore/1/57. In relation to the latter, the isolates of 1980 are older antigenic mutants. The isolates of 1980 are distinguished from virus A(H2N2), isolated in 1975 from the system of persisting influenza infection in a tissue culture, by mutation in NS-gene and the properties of RNA-polymerase. The authenticity of the isolation of viruses A(H2N2) in Leningrad in 1980 has been proved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号