首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1,7-Deoxy-4-deacetylbaccatin III (12) and its five analogues 6-9, 13, and their oxetane ring opened derivatives 14, 16, and 17, which were synthesized from taxinine, showed significant activity as MDR reversal agent by the assay of the calcein accumulation toward MDR human ovarian cancer 2780AD cells. The most effective compound 12 in this assay is actually efficient for the recovery of cytotoxic activity of paclitaxel (taxol), adriamycin (ADM), and vincristine (VCR) toward MDR 2780AD cells at the same level toward parental 2780 cells. This activity of 12 is very interesting because baccatin III (4) has no such MDR reversal activity but has cytotoxic activity. The essential functional groups inducing such a difference in biological activity between 4 and 12 are 4alpha-acetoxyl for 4 and 4alpha-hydroxyl for 12. In seven compounds possessing MDR reversal activity, compound 12 is the most desirable compound for anti-MDR cancer reversal agent, because it has the highest accumulation ability of anticancer agent in MDR cancer cells and weak cytotoxic activity. Compounds 8 and 13 showed significant cytotoxic activity toward HepG2 and VA-13, respectively, as well as MDR reversal activity. They are expected to become lead compounds for new types of anticancer agent or anti-MDR cancer agent.  相似文献   

2.
Taking into account that multidrug resistance (MDR) is the main cause for chemotherapeutic failure in cancer treatment and as a continuation of our efforts to overcome this problem we report the evaluation of one cyclic selenoanhydride (1) and ten selenoesters (211) in MDR human colon adenocarcinoma Colo 320 cell line. The most potent derivatives (1, 911) inhibited the ABCB1 efflux pump much stronger than the reference compound verapamil. Particularly, the best one (9) was 4-fold more potent than verapamil at a 10-fold lower concentration. Furthermore, the evaluated derivatives exerted a potent and selective cytotoxic activity. In addition, they were strong apoptosis inducers as the four derivatives triggered apoptotic events in a 64–72% of the examined MDR Colo 320 human adenocarcinoma cells.  相似文献   

3.
A series of 16 novel thalidomide sulfur analogs containing one and two sulfur atoms 2 and 4-18, respectively, were designed and synthesized. These compounds were screened for in vitro antitumor activity against Ehrlich ascites carcinoma (EAC) cell line and exhibited potent cytotoxic activity. On the bases of the obtained results for in vitro cytotoxic activity, thalidomide sulfur analogs containing two sulfur atoms 8, 9, 13 and 14 were selected and tested in vivo against EAC-induced solid tumor in female mice compared to thalidomide 1 as well as its analog 2 and exhibited a highly significant reduction in tumor volume (TV). Results illustrated the antioxidative activity of these compounds as the level of hepatic lipid peroxidation decreased and levels of antioxidant enzymes like superoxide dismutase (SOD) and catalase were elevated. The histopathological investigations revealed that thalidomide sulfur analogs 2, 8, 9, 13 and 14 have antimitotic, apoptotic and necrotic activities against solid tumor. These compounds lead to increase of Fas-L expression. The immunohistochemical studies showed a decrease in Ki67 and vascular endothelial growth factor (VEGF) staining in tumor cells from treated-animals when compared with non-treated groups, which suggests an inhibition of tumor proliferation rate and angiogenic process associated with tumor growth. Compounds 9 and 13 were the most potent compounds in tumor necrosis without liver necrosis. At the same time, treatment with compound 9 resulted in liver degeneration.  相似文献   

4.
The synthesis of different 4-arylcoumarin analogues of combretastatin A-4 led to the identification of two new compounds (1 and 2) with potent cytotoxic activity on a CEM leukemia cell line and a third one completely inactive (compound 3). It was suggested that the cytotoxicity of compounds 1 and 2 may be related to their interaction with microtubules and tubulin, since these compounds inhibit microtubule formation from purified tubulin in vitro [Bailly et al. (2003) J. Med. Chem. 46 (25), 5437-5444]. In the present study, tubulin was identified as the main target of these molecules. We studied structure-activity relationships of these compounds using biological experiments specific for tubulin binding. The modification of cell cycle progression induced by compounds 1 and 2 was characterized by an apoptotic induction on human breast cells (HBL100). In addition, these two molecules disturbed cell survival by depolymerizing the microtubule network, leading to a mitotic block. We then determined the thermodynamic parameters of their interaction with purified tubulin by fluorescence spectroscopy and isothermal microcalorimetry. These results, together with a superimposition of the molecule on colchicine in the X-ray-determined three-dimensional structure model of tubulin-colchicine complex, allowed us to identify the pharmacophore of the combretastatin A-4 analogues responsible for their biological activity.  相似文献   

5.
Recent studies have indicated that induction of apoptosis is the primary cytotoxic mechanism of most cancer chemotherapeutic agents, and abnormalities in the control of apoptosis can affect the sensitivity of malignant cells to multiple drugs. Here, we treated cells with cisplatin and other apoptotic stimuli and found that multidrug-resistant (MDR) endocervical HEN-16-2/CDDP cells, compared with drug-sensitive parental cells, were significantly more resistant to apoptosis and exhibited decreased proteolytic activation of caspase-3. The latter was further demonstrated by decreased cleavage of its substrate poly(ADP-ribose) polymerase (PARP). Further, Western blot analysis showed that MDR HEN-16-2/CDDP cells had significantly higher levels of the apoptosis-inhibiting proteins BAG-1 p50 and p33 isoforms and Bcl-X(L). This study provided the first evidence that overexpression of antiapoptotic BAG-1 p50 and p33 and Bcl-X(L) may cause resistance to apoptosis through reduction of caspase-3 activity in human cervical cells having an MDR phenotype.  相似文献   

6.
Based on the research of less toxic anticancer therapies, we have looked for novel compounds with anticancer activity based on a proapoptotic mechanism. The described compounds are derivatives of ether, carbamate, urea, amide, or amine. Some of the prepared compounds decreased cell viability of various tumor cell lines in a time- and dose-dependent manner, and also induced DNA fragmentation, which indicated cell apoptosis. The potential antitumoral activity of the compounds was evaluated in vitro by examining their cytotoxic effects against human mama, colon, and bladder cancer cell lines (MD-MBA-231, HT-29, and T-24). Compounds showing cytotoxic activity were subjected to an apoptosis assay. In addition, some of the synthesized compounds provoked a rapid and dose-dependent increase in the level of caspase-3, an enzyme, which is considered to be one of the principal executing caspases in which all of the biochemical routes involved in the apoptosis response converge. The most promising compounds, with respect to cytotoxicity and apoptosis induction capability, were the 4-nitrophenylcarbamate derivative of 2,2'-methylenebis(4-chlorophenyl) 3c, the naphthylurea derivative 4d, and the n-propylurea derivative 4c, from 4,4'-methylenebisphenyl, all of which displayed cytotoxic activity and showed very interesting levels of apoptosis. Furthermore, good levels of apoptosis induction were achieved for 3a and 4b in the T-24 cell line. Therefore, compounds such as 7b, a pyrido[2,3-d]pyrimidine derivative, show a significant in vitro cytotoxicity, with IC(50) values between 3 and 8 microm in the three cell lines tested. This compound also produced a rapid and dose-dependent increase of the caspase-3 level and induced apoptosis in HT-29 cells. Other profiles have been found, such as those presented by 5c and 7c, which are cytotoxic and apoptotic but do not provoke an increase in the level of caspase-3, or those presented by 1c, 1d, and 2a, which are cytotoxic, without showing any other activity. The different types of behavior of each compound are not necessarily parallel in the three cell lines tested. A great number of these compounds of interest show no cytotoxicity in nontumoral human cells such as CRL-8799, a nontumoral line of mama. Subsequent modulation of these lead structures permits advances in the design of potent cytotoxic and proapoptotic anticancer drugs.  相似文献   

7.
In a systematic effort aimed at identifying new steroidal cytotoxic agents with potent antiproliferative activity against cancer cells, we synthesized certain 16-[4-(NO2, CN, and i-Pr)substituted]benzylidene derivatives of androst-5-ene, 7-25, with pyrrolidino functionality in the 3beta-position of the steroid nucleus, i.e., 13-18 and 25. The selected compounds were examined for their cytotoxicity against a panel of three human cancer cell lines at the National Cancer Institute (NCI), Bethesda, USA. The results presented herein provide experimental evidence that compounds 7, 9, 10, 12, 16, and 19-21 induced apoptosis in human cancer cells.  相似文献   

8.
Thirteen xanthones were isolated naturally from the stem of Securidaca inappendiculata Hassk, and structure-activity relationships (SARs) of these compounds were comparatively predicted for their cytotoxic activity against three human multidrug resistant (MDR) cell lines MCF-7/ADR, SMMC-7721/Taxol, and A549/Taxol cells. The results showed that the selected xanthones exhibited different potent cytotoxic activity against the growth of different human tumor cell lines, and most of the xanthones exhibited selective cytotoxicity against SMMC-7721/Taxol cells. Furthermore, some tested xanthones showed stronger cytotoxicity than Cisplatin, which has been used in clinical application extensively. The SARs analysis revealed that the cytotoxic activities of diverse xanthones were affected mostly by the number and position of methoxyl and hydroxyl groups. Xanthones with more free hydroxyl and methoxyl groups increased the cytotoxic activity significantly, especially for those with the presence of C-3 hydroxyl and C-4 methoxyl groups.  相似文献   

9.
New thiazolylpyrazolyl coumarin derivatives were synthesized and tested for their anticancer potential in vitro against five different human cell lines, including breast MCF-7, lung A549, prostate PC3, liver HepG2 and normal melanocyte HFB4. Breast carcinoma revealed higher sensitivity towards compounds 7a, 8c, 9b, 9c and 9d with IC50 values ranging from 5.41 to 10.75 μM in comparison to the reference drug doxorubicin (IC50 = 6.73 μM). In addition, no noticeable toxicity was exhibited towards normal cells HFB4. Moreover, in vitro studies of the VEGFR-2 inhibition in human breast cancer MCF-7 cell line for the promising cytotoxic compounds showed that compounds 7a, 8c, 9b, 9c and 9d were potent inhibitors at low micromolar concentrations (IC50 = 0.034–0.582 μM) compared to the reference drug, sorafenib (IC50 = 0.019 μM). Several theoretical and experimental studies were done to reveal the molecular mechanisms that control breast carcinoma metastasis. The mechanistic effectiveness in cell cycle progression, apoptotic induction and gene regulation were assessed for the promising compound 9d due to its remarkable cytotoxic activity against MCF-7 and significant VEGFR-2 inhibition. Flow cytometeric analysis showed that compound 9d induced cell growth cessation at G2/M phase and increased the percentage of cells at pre-G1 phase that stimulates the apoptotic death of MCF-7 cells. Furthermore, real time PCR assay illustrated that compound 9d up regulated p53 gene expression and elevated Bax/Bcl-2 ratio which confirmed the mechanistic pathway of compound 9d. Moreover, the apoptotic induction of breast cancer cells MCF-7 was enhanced effectively through activation of caspases-7 and 9 by compound 9d. On the other hand, a set of in silico methods such as molecular docking, molecular dynamics simulation, QSAR analysis as well as ADMET analysis was performed in order to study the protein-ligand interactions and the relationship between the physicochemical properties and the inhibitory activity of the promising compounds 7a, 8c and 9d. Based on the aforementioned findings, compound 9d could be considered as effective apoptosis modulator and promising lead for future development of new anti-breast cancer agents.  相似文献   

10.
A new series of antibacterial and antifungal furanyl-derived sulfonamides and their cobalt (II), copper (II), nickel (II) and zinc (II) metal complexes have been synthesized, characterized and screened for their in-vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and, for in-vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. The results of these studies revealed that all compounds showed significant to moderate antibacterial activity. However, the zinc (II) complexes were found to be comparatively much more active as compared to the others. For antifungal activity generally, compounds (22) and (24) showed significant activity against Escherichia coli (a), (6) against Shigella flexeneri (b), (16) and (22) against Pseudomonas aeruginosa (c), (14) and (16) against Salmonella typhi (d), (9) against Staphylococcus aureus (e) and, (14) and (16) against Bacillus subtilis (f) fungal strains. The brine shrimp (Artemia salina) bioassay was also carried out to study their in-vitro cytotoxic properties. Only three compounds, (6), (10) and (23) displayed potent cytotoxic activity with LD50 = 1.8535 x 10(-4), 1.8173 x 10(-4) and 1.9291 x 10(-4) respectively.  相似文献   

11.
Schiff bases (imines or azomethines) are versatile ligands synthesized from the condensation of amino compounds with active carbonyl groups and used for many pharmaceutical and medicinal applications. In our study, we aimed to determine the cytotoxic, antifungal and larvicidal activities of biologically potent bis-sulfonamide Schiff base derivatives that were re-synthesized by us. For this aim, 16 compounds were re-synthesized and tested for their cytotoxic, antifungal and larvicidal properties. Among this series, compounds A1B2 , A1B4 , A4B2 , A4B3 , and A4B4 were shown to have cytotoxic activity against tested cancer lung cell line (A549). The most potent antifungal activity was observed in compounds A2B1 and A2B2 against all fungi. A1B1 showed the strongest larvicidal effect at all concentrations at the 72nd h (100% mortality). These obtained results demonstrate that these type of bis-substituted compounds might be used as biologically potent pharmacophores against different types of diseases.  相似文献   

12.
The use of antineoplastic drugs for cancer treatment is frequently associated with the acquisition of a multidrug-resistant (MDR) phenotype that renders tumoural cells insensitive to antineoplastics. It remains elusive whether the acquisition of the MDR phenotype alters immunological parameters that could influence the cell sensitivity to an eventual host immune response. We report that immunisation of syngeneic mice with -irradiated L1210S (parental line) and L1210R (MDR phenotype) cells results in a significant rejection of subsequently implanted L1210R-based tumours, but not of the L1210S ones. Notably, L1210R tumours display a twofold reduction in vivo proliferative capacity and are less aggressive in terms of mouse survival than their sensitive counterparts. Also, analysis of surface expression of molecules involved in antigen presentation and cytokine activity revealed a slight increase in IFN- receptor expression, a decrease of Fas molecule, and a fourfold up-regulation of MHC class I molecules in L1210R cells. Nonetheless, both cell lines were able to induce a cytotoxic response in syngeneic mice and were equally susceptible to cytotoxicity by splenic cells. Together, these findings indicate that acquisition of drug resistance by L1210 cells is accompanied by pleiotropic changes that result in reduced tumour proliferative capacity and tumorigenicity in syngeneic mice. Hence, immunological studies of MDR tumours may assist in the design of specific therapeutic strategies that complement current chemotherapy treatments.  相似文献   

13.
The natural polyether ionophore antibiotics might be important chemotherapeutic agents for the treatment of cancer. In this article, the pharmacology and anticancer activity of the polyether ionophores undergoing pre-clinical evaluation are reviewed. Most of polyether ionophores have shown potent activity against the proliferation of various cancer cells, including those that display multidrug resistance (MDR) and cancer stem cells (CSC). The mechanism underlying the anticancer activity of ionophore agents can be related to their ability to form complexes with metal cations and transport them across cellular and subcellular membranes. Increasing evidence shows that the anticancer activity of polyether ionophores may be a consequence of the induction of apoptosis leading to apoptotic cell death, arresting cell cycle progression, induction of the cell oxidative stress, loss of mitochondrial membrane potential, reversion of MDR, synergistic anticancer effect with other anticancer drugs, etc. Continued investigation of the mechanisms of action and development of new polyether ionophores and their derivatives may provide more effective therapeutic drugs for cancer treatments.  相似文献   

14.
Motivated by the potential anticancer activity of both coumarin and 2-aminothiazole nuclei, a new set of thiazol-2-yl hydrazono-chromen-2-one analogs were efficiently synthesized aiming to obtain novel hybrids with potential cytotoxic activity. MTT assay investigated the significant potency of all the target compounds against the human cervical cancer cell lines (HeLa cells). Cell cycle analysis showed that the representative compound 8a led to cell cycle cessation at G0/G1 phase indicating that CDK2/E1complex could be the plausible biological target for these newly synthesized compounds. Thus, the most active compounds (7c and 8a-c) were tested for their CDK2 inhibitory activity. The biological results revealed their significant CDK2 inhibitory activity with IC50 range of 0.022–1.629 nM. Moreover, RT-PCR gene expression assay showed that compound 8a increased the levels of the nuclear CDK2 regulators P21 and P27 by 2.30 and 5.7 folds, respectively. ELISA tequnique showed also that compound 8a led to remarkable activation of caspases-9 and -3 inducing cell apoptosis. QSAR study showed that the charge distribution and molecular hydrophobicity are the structural features affecting cytotoxic activity in this series. Molecular docking study for the most potent cytotoxic compounds (7c and 8a-c) rationalized their superior CDK2 inhibitory activity through their hydrogen bonding and hydrophobic interactions with the key amino acids in the CDK2 binding site. Pharmacokinetic properties prediction of the most potent compounds showed that the newly synthesized compounds are not only with promising antitumor activity but also possess promising pharmacokinetic properties.  相似文献   

15.
Chen Y  Zheng J  Zheng F  Wang J  Zhang Y  Gao F  Huang Z  Shi G 《PloS one》2011,6(11):e27673
Several haloperidol derivatives with a piperidine scaffold that was decorated at the nitrogen atom with different alkyl, benzyl, or substituted benzyl moieties were synthesized at our laboratory to establish a library of compounds with vasodilator activity. Compounds were screened for vasodilatory activity on isolated thoracic aorta rings from rats, and their quantitative structure-activity relationships (QSAR) were examined. Based on the result of QSAR, N-4-tert-butyl benzyl haloperidol chloride (16c) was synthesized and showed the most potent vasodilatory activity of all designed compounds. 16c dose-dependently inhibited the contraction caused by the influx of extracellular Ca(2+) in isolated thoracic aorta rings from rats. It concentration-dependently attenuated the calcium channel current and extracellular Ca(2+) influx, without affecting the intracellular Ca(2+) mobilization, in vascular smooth muscle cells from rats. 16c, possessing the N-4-tert-butyl benzyl piperidine structure, as a novel calcium antagonist, may be effective as a calcium channel blocker in cardiovascular disease.  相似文献   

16.
Breast cancer is one of the most common cancers worldwide and the discovery of new cytotoxic agents is needed. Enaminones are regarded to be a significant structural motif that is found in a variety of pharmacologically active compounds however the number of studies investigating the anticancer activities of N-propargylic β-enaminones (NPEs) is limited. Herein we investigated the potential cytotoxic and apoptotic effects of 23 different NPEs (1-23) on human breast cancer cells. Cytotoxicity was evaluated via MTT assay. Apoptotic cell death and cell cycle distributions were investigated by flow cytometry. CM-H2DCFDA dye was used to evaluate cellular ROS levels. Expression levels of Bcl-2, Bax, p21, and Cyclin D1 were measured by quantitative real-time PCR. ADME properties were calculated using the ADMET 2.0 tool. NPEs 4, 9, 16, and 21 showed selective cytotoxic activity against breast cancer cells with SI values >2. NPEs induced apoptosis and caused significant changes in Bcl-2 and Bax mRNA levels. The cell cycle was arrested at the G0/G1 phase and levels of p21 and Cyclin D1 were upregulated in both breast cancer cells. ROS levels were significantly increased by NPEs, suggesting that the cytotoxic and apoptotic effects of NPEs were mediated by ROS. ADME analysis revealed that NPEs showed favorable distributions in both breast cancer cell lines, meaning good lipophilicity values, low unfractionated values, and high bioavailability. Therefore, these potential anticancer compounds should be further validated by in vivo studies for their appropriate function in human health with a safety profile, and a comprehensive drug interaction study should be performed.  相似文献   

17.
Michael adducts of ascorbic acid with alpha,beta-unsaturated carbonyl compounds have been shown to be potent inhibitors of protein phosphatase 1 (PP1) without affecting cell viability at the respective concentrations. Here we were able to show that higher concentrations can partially inhibit PP2A activity and concomitantly induce apoptotic cell death. A nitrostyrene adduct of ascorbic acid proved to be a more potent and effective inhibitor of PP2A as well as a stronger inducer of apoptosis. These adducts only slightly lost their cytotoxic potential in multidrug resistant cells that were 10-fold less sensitive to apoptosis induction by okadaic acid and vinblastine.  相似文献   

18.
We previously reported the characterization of a MHC class II(low) CD4- CD103+ (CD4-) subset of dendritic cells (DC) in rat spleen that exhibit a Ca2+-, Fas ligand-, TRAIL- and TNF-alpha-independent cytotoxic activity against specific targets in vitro. In this study, we demonstrate that this DC subset was also found in lymph nodes. Freshly extracted and, therefore, immature CD4- DC exhibited a potent cytotoxic activity against a large panel of tumor cell lines as well as primary endothelial cells. The cytotoxic activity of immature CD4- DC required cell-to-cell contact and de novo protein expression. CD4- DC-mediated cell death resembled apoptosis, as evidenced by outer membrane phosphatidylserine exposure and nuclear fragmentation in target cells, but was caspase as well as Fas-associated death domain and receptor-interacting protein independent. Bcl-2 overexpression in target cells did not protect them against DC-mediated cell death. Immature CD4- DC phagocytosed efficiently apoptotic cells in vitro and, therefore, rapidly and specifically engulfed their victims following death induction. Maturation induced a dramatic down-regulation of the killing and phagocytic activities of CD4- DC. In contrast, CD4+ DC were both unable to kill target cells and to phagocytose apoptotic cells in vitro. Taken together, these data indicate that rat immature CD4- CD103+ DC mediate an unusual cytotoxic activity and can use this function to efficiently acquire Ag from live cells.  相似文献   

19.
The new glutathione S-transferase inhibitor 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) is cytotoxic toward P-glycoprotein-overexpressing tumor cell lines, i.e. CEM-VBL10, CEM-VBL100, and U-2 OS/DX580. The mechanism of cell death triggered by NBDHEX has been deeply investigated in leukemia cell lines. Kinetic data indicate a similar NBDHEX membrane permeability between multidrug resistance cells and their sensitive counterpart revealing that NBDHEX is not a substrate of the P-glycoprotein export pump. Unexpectedly, this molecule promotes a caspase-dependent apoptosis that is unusual in the P-glycoprotein-overexpressing cells. The primary event of the apoptotic pathway is the dissociation of glutathione S-transferase P1-1 from the complex with c-Jun N-terminal kinase. Interestingly, leukemia MDR1-expressing cells show lower LC50 values and a higher degree of apoptosis and caspase-3 activity than their drug-sensitive counterparts. The increased susceptibility of the multidrug resistance cells toward the NBDHEX action may be related to a lower content of glutathione S-transferase P1-1. Given the low toxicity of NBDHEX in vivo, this compound may represent an attractive basis for the selective treatment of MDR1 P-glycoprotein-positive tumors.  相似文献   

20.
Nine novel 4beta-N-substituted-5-FU-4'-demethylepipodophyllotoxin derivatives were synthesized and evaluated as potential antitumor agents. All of the target compounds showed more significant cytotoxic activity against HL-60 and A-549 in vitro than VP-16 and 5-FU. Among them, 4beta-N-substituted-phenylalanine 5-Fu pentyl ester-4'-demethylepipodophyllotoxin (9 g) was found to exhibit most potent cytotoxic activity against HL-60 and A-549 cell (IC50 is 0.04 and <0.01 microM, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号