首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
RNA synthesis during viral replication requires specific recognition of RNA promoters by the viral RNA-dependent RNA polymerase (RdRp). Four nucleotides (−17, −14, −13, and −11) within the brome mosaic virus (BMV) subgenomic core promoter are required for RNA synthesis by the BMV RdRp (R. W. Siegel et al., Proc. Natl. Acad. Sci. USA 94:11238–11243, 1997). The spatial requirements for these four nucleotides and the initiation (+1) cytidylate were examined in RNAs containing nucleotide insertions and deletions within the BMV subgenomic core promoter. Spatial perturbations between nucleotides −17 and −11 resulted in decreased RNA synthesis in vitro. However, synthesis was still dependent on the key nucleotides identified in the wild-type core promoter and the initiation cytidylate. In contrast, changes between nucleotides −11 and +1 had a less severe effect on RNA synthesis but resulted in RNA products initiated at alternative locations in addition to the +1 cytidylate. The results suggest a degree of flexibility in the recognition of the subgenomic promoter by the BMV RdRp and are compared with functional regions in other DNA and RNA promoters.  相似文献   

3.
4.
Replication of viral RNA genomes requires the specific interaction between the replicase and the RNA template. Members of the Bromovirus and Cucumovirus genera have a tRNA-like structure at the 3' end of their genomic RNAs that interacts with the replicase and is required for minus-strand synthesis. In Brome mosaic virus (BMV), a stem-loop structure named C (SLC) is present within the tRNA-like region and is required for replicase binding and initiation of RNA synthesis in vitro. We have prepared an enriched replicase fraction from tobacco plants infected with the Fny isolate of Cucumber mosaic virus (Fny-CMV) that will direct synthesis from exogenously added templates. Using this replicase, we demonstrate that the SLC-like structure in Fny-CMV plays a role similar to that of BMV SLC in interacting with the CMV replicase. While the majority of CMV isolates have SLC-like elements similar to that of Fny-CMV, a second group displays sequence or structural features that are distinct but nonetheless recognized by Fny-CMV replicase for RNA synthesis. Both motifs have a 5'CA3' dinucleotide that is invariant in the CMV isolates examined, and mutational analysis indicates that these are critical for interaction with the replicase. In the context of the entire tRNA-like element, both CMV SLC-like motifs are recognized by the BMV replicase. However, neither motif can direct synthesis by the BMV replicase in the absence of other tRNA-like elements, indicating that other features of the CMV tRNA can induce promoter recognition by a heterologous replicase.  相似文献   

5.
The brome mosaic virus (BMV) RNA-dependent RNA polymerase (RdRp) directs template-specific synthesis of (-)-strand genomic and (+)-strand subgenomic RNAs in vitro. Although the requirements for (-)-strand RNA synthesis have been characterized previously, the mechanism of subgenomic RNA synthesis has not. Mutational analysis of the subgenomic promoter revealed that the +1 cytidylate and the +2 adenylate are important for RNA synthesis. Unlike (-)-strand RNA synthesis, which required only a high GTP concentration, subgenomic RNA synthesis required high concentrations of both GTP and UTP. Phylogenetic analysis of the sequences surrounding the initiation sites for subgenomic and genomic (+)-strand RNA synthesis in representative members of the alphavirus-like superfamily revealed that the +1 and +2 positions are highly conserved as a pyrimidine-adenylate. GDP and dinucleotide primers were able to more efficiently stimulate (-)-strand synthesis than subgenomic synthesis under conditions of limiting GTP. Oligonucleotide products of 6-, 7-, and 9-nt were synthesized and released by RdRp in 3-20-fold molar excess to full-length subgenomic RNA. Termination of RNA synthesis by RdRp was not induced by template sequence alone. Our characterization of the stepwise mechanism of subgenomic and (-)-strand RNA synthesis by RdRp permits comparisons to the mechanism of DNA-dependent RNA synthesis.  相似文献   

6.
7.
Initiation of genomic plus-strand RNA synthesis by the brome mosaic virus (BMV) replicase in vitro requires a 26-nucleotide (nt) RNA sequence at the 3' end of the minus-strand RNA and a nontemplated nucleotide 3' of the initiation cytidylate [ Sivakumaran, K. and Kao, C.C. (1999) J. Virol. 64 , 6415–6423]. At the 5' end of this RNA is a 9-nt sequence called the cB box, the complement of the previously defined B box. The cB box can not be functionally replaced by the B box and has specific positional and sequence requirements. The portion of the cB box that is required for RNA synthesis in vitro is well-conserved in species in the Bromoviridae family. An equivalent RNA from Cucumber mosaic virus was unable to direct efficient RNA synthesis by the BMV replicase until the cB box was positioned at the same site relative to the BMV RNA and guanylates were present at positions +6 and +7 from the initiation cytidylate. These results further define the elements required for the recognition and initiation of viral genomic plus-strand RNA synthesis and suggest that a sequence important for minus-strand RNA synthesis is also required for plus-strand RNA synthesis.  相似文献   

8.
9.
In contrast to the synthesis of minus-strand genomic and plus-strand subgenomic RNAs, the requirements for brome mosaic virus (BMV) genomic plus-strand RNA synthesis in vitro have not been previously reported. Therefore, little is known about the biochemical requirements for directing genomic plus-strand synthesis. Using DNA templates to characterize the requirements for RNA-dependent RNA polymerase template recognition, we found that initiation from the 3' end of a template requires one nucleotide 3' of the initiation nucleotide. The addition of a nontemplated nucleotide at the 3' end of minus-strand BMV RNAs led to initiation of genomic plus-strand RNA in vitro. Genomic plus-strand initiation was specific since cucumber mosaic virus minus-strand RNA templates were unable to direct efficient synthesis under the same conditions. In addition, mutational analysis of the minus-strand template revealed that the -1 nontemplated nucleotide, along with the +1 cytidylate and +2 adenylate, is important for RNA-dependent RNA polymerase interaction. Furthermore, genomic plus-strand RNA synthesis is affected by sequences 5' of the initiation site.  相似文献   

10.
Expression of brome mosaic virus (BMV) coat protein and internal genes of many other positive-strand RNA viruses requires initiation of subgenomic mRNA synthesis from specific internal sites on minus-strand genomic RNA templates. Biologically active viral cDNA clones were used to investigate the sequences controlling production of BMV subgenomic RNA in vivo. Suitable duplications directed production of specifically initiated, capped subgenomic RNAs from new sites in the BMV genome. Previously implicated promoter sequences extending 20 bases upstream (-20) and 16 bases downstream (+16) of the subgenomic RNA initiation site directed only low-level synthesis. Subgenomic RNA production at normal levels required sequences extending to at least -74 but not beyond -95. Loss of an (rA)18 tract immediately upstream of the -20 to +16 "core promoter" particularly inhibited subgenomic RNA synthesis. The -38 to -95 region required for normal initiation levels contains repeats of sequence elements in the core promoter, and duplications creating additional upstream copies of these repeats stimulated subgenomic RNA synthesis above wild-type levels. At least four different subgenomic RNAs can be produced from a single BMV RNA3 derivative. For all derivatives producing more than one subgenomic RNA, a gradient of accumulation progressively favoring smaller subgenomic RNAs was seen.  相似文献   

11.
12.
13.
14.
Choi SK  Hema M  Gopinath K  Santos J  Kao C 《Journal of virology》2004,78(24):13420-13429
The cis-acting elements for Brome mosaic virus (BMV) RNA synthesis have been characterized primarily for RNA3. To identify additional replicase-binding elements, nested fragments of all three of the BMV RNAs, both plus- and minus-sense fragments, were constructed and tested for binding enriched BMV replicase in a template competition assay. Ten RNA fragments containing replicase-binding sites were identified; eight were characterized further because they were more effective competitors. All eight mapped to noncoding regions of BMV RNAs, and the positions of seven localized to sequences containing previously characterized core promoter elements (C. C. Kao, Mol. Plant Pathol. 3:55-62, 2001), thus suggesting the identities of the replicase-binding sites. Three contained the tRNA-like structures that direct minus-strand RNA synthesis, three were within the 3' region of each minus-strand RNA that contained the core promoter for genomic plus-strand initiation, and one was in the core subgenomic promoter. Single-nucleotide mutations known previously to abolish RNA synthesis in vitro prevented replicase binding. When tested in the context of the respective full-length RNAs, the same mutations abolished BMV RNA synthesis in transfected barley protoplasts. The eighth site was within the intercistronic region (ICR) of plus-strand RNA3. Further mapping showed that a sequence of 22 consecutive adenylates was responsible for binding the replicase, with 16 being the minimal required length. Deletion of the poly(A) sequence was previously shown to severely debilitate BMV RNA replication in plants (E. Smirnyagina, Y. H. Hsu, N. Chua, and P. Ahlquist, Virology 198:427-436, 1994). Interestingly, the B box motif in the ICR of RNA3, which has previously been determined to bind the 1a protein, does not bind the replicase. These results identify the replicase-binding sites in all of the BMV RNAs and suggest that the recognition of RNA3 is different from that of RNA1 and RNA2.  相似文献   

15.
The RNA replicase extracted from Brome mosaic virus (BMV)-infected plants has been used to characterize the cis-acting elements for RNA synthesis and the mechanism of RNA synthesis. Minus-strand RNA synthesis in vitro requires a structure named stem-loop C (SLC) that contains a clamped adenine motif. In vitro, there are several specific requirements for SLC recognition. We examined whether these requirements also apply to BMV replication in barley protoplasts. BMV RNA3s with mutations in SLC were transfected into barley protoplasts, and the requirements for minus- and plus-strand replication were found to correlate well with the requirements in vitro. Furthermore, previous analysis of replicase recognition of the Cucumber mosaic virus (CMV) and BMV SLCs indicates that the requirements in the BMV SLC are highly specific. In protoplasts, we found that BMV RNA3s with their SLCs replaced with two different CMV SLCs were defective for replication. In vitro results generated with the BMV replicase and minimal-length RNAs generally agreed with those of in vivo BMV RNA replication. To extend this conclusion, we determined that, corresponding with the process of infection, the BMV replicases extracted from plants at different times after infection have different levels of recognition of the minimal promoters for plus- and minus-strand RNA syntheses.  相似文献   

16.
17.
A 15-nucleotide (nt) unstructured RNA with an initiation site but lacking a promoter could direct the initiation of RNA synthesis by the brome mosaic virus (BMV) replicase in vitro. However, BMV RNA with a functional initiation site but a mutated promoter could not initiate RNA synthesis either in vitro or in vivo. To explain these two observations, we hypothesize that RNA structures that cannot function as promoters could prevent RNA synthesis by the BMV RNA replicase. We documented that four different nonpromoter stem-loops can inhibit RNA synthesis from an initiation-competent RNA sequence in vitro. Destabilizing these structures increased RNA synthesis. However, RNA synthesis was restored in full only when a BMV RNA promoter element was added in cis. Competition assays to examine replicase-RNA interactions showed that the structured RNAs have a lower affinity for the replicase than do RNAs lacking stable structures or containing a promoter element. The results characterize another potential mechanism whereby the BMV replicase can specifically recognize BMV RNAs.  相似文献   

18.
The 3' end of brome mosaic virus RNA contains a tRNA-like sequence that directs its RNA synthesis. A stem loop structure in this sequence, stem loop C (SLC), was investigated using NMR, and correlated with its ability to direct RNA synthesis by its replicase. SLC consists of two discrete domains, a flexible stem with an internal loop and a rigid stem containing a 5'-AUA-3' triloop. Efficient RNA synthesis requires the sequence on only one side of the flexible stem and a specific compact conformation of the triloop. A high resolution structure of the triloop places the 5' adenine out in solution, and the 3' adenine within the triloop, held tightly through stacking and unusual hydrogen bonds. This high resolution structure of an RNA promoter from a (+)-strand RNA virus provides new insights into how the RNA-dependent RNA polymerase binds to the RNA to initiate synthesis.  相似文献   

19.
The expression of the coat protein gene requires RNA-mediated trans-activation of subgenomic RNA synthesis in Red clover necrotic mosaic virus (RCNMV), the genome of which consists of two positive-strand RNAs, RNA1 and RNA2. The trans-acting RNA element required for subgenomic RNA synthesis from RNA1 has been mapped previously to the protein-coding region of RNA2, whereas RNA2 is not required for the replication of RNA1. In this study, we investigated the roles of the protein-coding region in RNA2 replication by analyzing the replication competence of RNA2 mutants containing deletions or nucleotide substitutions. Our results indicate that the same stem-loop structure (SL2) that functions as a trans-activator for RNA-mediated coat protein expression is critically required for the replication of RNA2 itself. Interestingly, however, disruption of the RNA-RNA interaction by nucleotide substitutions in the region of RNA1 corresponding to the SL2 loop of RNA2 does not affect RNA2 replication, indicating that the RNA-RNA interaction is not required for RNA2 replication. Further mutational analysis showed that, in addition to the stem-loop structure itself, nucleotide sequences in the stem and in the loop of SL2 are important for the replication of RNA2. These findings suggest that the structure and nucleotide sequence of SL2 in RNA2 play multiple roles in the virus life cycle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号