首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Earlier experiments with the use of nucleoprotein-celite chromatography revealed that DNA is bound to a replicative complex localized in the nuclear matrix by a topologically tight bond. Induction of site-specific DNA breaks by restriction nucleases in isolated nuclei of proliferating cells causes a gradual concentration-dependent liberation of DNA from the tight binding to the nuclear matrix. The DNA involved in the tight interaction with matrix proteins is especially sensitive to digestion by Sau 3A1, EcoRI, PstI, BCNI and Bam HI restrictases. One-strand DNA-specific nuclease Bal 31 also destroys the tight DNA-matrix bond. The tightness of DNA-protein bonds in chromatin particles formed after the digestion of nuclei with restrictases is dependent on the particle size. The data are summarized in a model of a topological DNA-matrix bond.  相似文献   

2.
Isolated chromosomal DNA is associated with polypeptides that are not released from DNA by several methods designed to purify DNA, e.g. treatment with sodium dodecyl sulphate. DNA fragments associated with these very tight DNA/protein complexes show high affinity to nitrocellulose filters in the presence of salt concentrations of 500 mM or greater. Consequently, a fraction of AluI-fragmented native DNA comprising the complexes and 0.2 to 0.3 micron of vicinal DNA can be isolated by one filtration step. This fraction of DNA shows characteristics of residual DNA sequences retained in nuclei after extraction with nucleases and high salt (nuclear matrix). The DNA fragments retained on filters are highly enriched in replicative DNA; and their degree of hybridization with poly(A)+ RNA points to enrichment in actively transcribed sequences. The results support previous work indicating that the very tight DNA/polypeptide complexes co-isolating with DNA under conditions that release other peptide materials from DNA may be anchorage sites of DNA in the nuclear matrix. Moreover, the method described here allows isolation of replicating and actively transcribed DNA sequences directly from isolated total genomic DNA by skipping artefact-prone isolations of the nuclear matrix.  相似文献   

3.
Antibodies against rat liver chromatin interact with homologous chromatin as well as with chromatin of Zajdela ascite hepatoma and solid hepatoma 27, but not with the nuclear matrix isolated from these hepatomas. Rat liver chromatin regions hypersensitive to DNAase I and endogenous Mg2+-dependent nuclease are enriched with immunogenic nonhistone proteins. Using antiliver IgG pretreated with chromatin of Zajdela ascite hepatoma and solid hepatoma 27, it was shown that liver chromatin antigens that are not detectable in hepatoma cells are localized in hypersensitive to nucleases chromatin regions buy not in actively transcribed ones.  相似文献   

4.
Isolated yeast nuclei were subjected to autodigestion by Mg2(+)-activated endogenous nucleases. The nuclear digests were analysed for their chromatin components. Gel electrophoresis and melting temperature analyses revealed the presence of DNA organized into nucleosomes. Our results demonstrate that magnesium activated endogenous endonucleases of yeast digest the chromatin into mono- and oligo- nucleosomal size fragments.  相似文献   

5.
An endogenous Ca2+, Mg2+-dependent factor of enzymic nature (apparently an endonuclease) digests a part of chromatin in the rat liver nuclei producing DNA fragments of an uniform size. After 60 min of incubation at 15 degrees C and pH 7.50 in the presence of 5 mM MgCl2 and 2 mM CaCl2 87-93% of the total chromatin becomes soluble. The insoluble chromatin however contains 70-85% of the in vivo newly synthesized RNA. In regenerating liver the proportion of the insoluble residual chromatin increases while the radioactivity of the newly synthesized DNA in this fraction is highest. Residual chromatin can be solubilized by ultrasonic treatment only. The Ca2+, Mg2+-dependent dissolving factor is not present either in brain or in PMN leucocyte nuclei.  相似文献   

6.
The endogenous endonuclease activity of chromatin in isolated rat liver nuclei in the presence of Mn2+, Mg2+ and Ca2+ + Mg2+ was studied. The existence of a Mn2+-dependent endonuclease activity not coupled with the Ca2+, Mg2+-dependent endonuclease was demonstrated, which was weaker than the former one in isolated cell nuclei but higher than in the preparation of Ca2+, Mg2+-dependent nuclease obtained by gel filtration through Toyopearl HW 60F. The Mn2+-dependent splitting of chromatin predominantly occurs at linker DNA of distal parts of chromatin loops. A split-off of purified DNA was more universal than in the presence of Ca2+, Mg2+-dependent endonuclease; the hydrolysis rate of native and denaturated DNA appeared to be the same.  相似文献   

7.
8.
An Mg2(+)-dependent endonuclease endogenous to rat-liver nuclei had an exonuclease activity for single-stranded DNA, but not for duplex DNA. The activity was about twice as high in the 3'----5' direction as in the 5'----3' direction. The products by 3'----5' activity were mononucleotides alone. The 5'----3' activity released mononucleotides as main products and small amounts of di-, tri-, tetra- and oligonucleotides. Another major endonuclease endogenous to the nuclei, a Ca2+/Mg2(+)-dependent endonuclease, did not have such exonuclease activities.  相似文献   

9.
The nucleosome repeat structure of a rat liver chromatin component containing the satellite I DNA (repeat length 370 bp) was investigated. Digestion experiments with micrococcal nuclease, DNAase II, and the Ca2+/Mg2+-dependent endogenous nuclease of rat liver nuclei revealed a repeat unit of 185 nucleotide pairs which is shorter by approximately 10 bp than the repeat unit of the bulk chromatin of this cell type. The difference seems not to be related to the histone composition which was found to be similar in the two types of chromatin.  相似文献   

10.
DNA synthesis in hepatocytes was studied by incorporation of [3H]thymidine administered to portal vein of gamma-irradiated (80 Gy) rats. It was shown that the rate of replicative DNA synthesis decreased in hepatocytes of the regenerating liver and unscheduled DNA synthesis was induced at the nuclear matrix of resting cells of the intact liver. In addition to repair synthesis, DNA synthesis resembling replicative one ("aberrant" DNA synthesis) accounts for a considerable fraction of gamma-radiation-induced synthesis of DNA at the nuclear matrix.  相似文献   

11.
Biochemical fractionation was combined with high resolution electron microscopic autoradiography to study the localization in rat liver nuclear matrix of attached DNA fragments, in vivo replicated DNA, and in vitro synthesized DNA. In particular, we determined the distribution of these DNA components with the peripheral nuclear lamina versus more internally localized structural elements of isolated nuclear matrix. Autoradiography demonstrated that the bulk of in vivo newly replicated DNA associated with the nuclear matrix (71%) was found within internal matrix regions. A similar interior localization was observed in isolated nuclei and in situ in whole liver tissue. Likewise, isolated nuclear lamina contained only a small amount (12%) of the total matrix-bound, newly replicated DNA. The structural localization of matrix-bound DNA fragments was examined following long-term in vivo labeling of the DNA. The radioactive DNA fragments were found predominantly within interior regions of the matrix structure (77%), and isolated nuclear lamina contained less than 15% of the total nuclear matrix-associated DNA. Most of the endogenous DNA template sites for the replicative enzyme DNA polymerase alpha (approximately 70%) were also sequestered within interior regions of the matrix. In contrast, a majority of the endogenous DNA template sites for DNA polymerase beta (a presumptive repair enzyme) were closely associated with the peripheral nuclear lamina. A similar spatial distribution for both polymerase activities was measured in isolated nuclei before matrix fractionation. Furthermore, isolated nuclear lamina contained only a small proportion of total matrix-bound DNA polymerase alpha endogenous and exogenous template activities (3-12%), but a considerable amount of the corresponding beta polymerase activities (47-52%). Our results support the hypothesis that DNA loops are both anchored and replicated at nuclear matrix-bound sites that are predominantly but not exclusively associated with interior components of the matrix structure. Our results also suggest that the sites of nuclear DNA polymerase beta-driven DNA synthesis are uniquely sequestered within the characteristic peripheral heterochromatin shell and associated nuclear envelope structure, where they may potentially participate in DNA repair and/or replicative functions.  相似文献   

12.
Initial degradation of chromatin into high-molecular mass DNA fragments during apoptosis reflects the periodicity of chromatin organization into nuclear matrix-attached loops. In this article, we put forward the hypothesis that this pattern of DNA cleavage is also a result of the localization of an endonuclease on the nuclear matrix. Namely, we observed an endonucleolytic activity of the isolated rat hepatocyte nuclear matrix. It was Mg2+-dependent, with an optimal activity at pH 7.2 in the absence of either Na+ or K+. It was fully active in the presence of Zn2+ and capable of introducing single-strand breaks into plasmid DNA. It did not display a sequence-specific activity. A 23 kDa DNA nuclease that was principally localized on the rat hepatocyte nuclear matrix was detected. The enzyme shared the biochemical requirements with the nuclear matrix endonucleolytic activity, thus we proposed that p23 could be responsible for the endonucleolytic activity of the nuclear matrix. In view of its properties and preferential localization on the nuclear matrix, the endonuclease described herein could be a possible candidate that brings about initial DNA cleavage during apoptosis.  相似文献   

13.
Proapoptotic BH3 interacting domain death agonist (Bid), a BH3-only Bcl-2 family member, is situated at the interface between the DNA damage response and apoptosis, with roles in death receptor-induced apoptosis as well as cell cycle checkpoints following DNA damage.(1, 2, 3) In this study, we demonstrate that Bid functions at the level of the sensor complex in the Atm and Rad3-related (Atr)-directed DNA damage response. Bid is found with replication protein A (RPA) in nuclear foci and associates with the Atr/Atr-interacting protein (Atrip)/RPA complex following replicative stress. Furthermore, Bid-deficient cells show an impaired response to replicative stress manifest by reduced accumulation of Atr and Atrip on chromatin and at DNA damage foci, reduced recovery of DNA synthesis following replicative stress, and decreased checkpoint kinase 1 activation and RPA phosphorylation. These results establish a direct role for the BH3-only Bcl-2 family member, Bid, acting at the level of the damage sensor complex to amplify the Atr-directed cellular response to replicative DNA damage.  相似文献   

14.
DNA swivel enzyme activity in a nuclear membrane fraction.   总被引:2,自引:1,他引:1       下载免费PDF全文
DNA swivel (nicking-rejoining) enzyme activity has been studied in various cell fractions of a human lymphoid cell line. Swivel activity is found only in chromatin and in a nuclear membrane fraction containing DNA and possessing endogenous DNA synthesizing activity. Twenty percent of the total swivel activity and less than one percent of the total DNA are in the membrane fraction. The swivel enzyme is more tightly bound to the membrane fraction than to the chromatin fraction. These observations suggest that the swivel enzyme may be a replication factor, specifically bound to replicating DNA in the membrane fraction.  相似文献   

15.
We succeeded in reconstituting the endogenous nuclear DNA synthesis of the sea urchin. Endogenous DNA synthesis of isolated nuclei was reconstituted by mixing the salt-treated nuclei (chromatin exhibiting essentially no endogenous DNA synthesis) and the salt extract containing DNA polymerase-alpha. DNA synthesis in this reconstitution system showed a level of activity and a mode of inhibition by aphidicolin similar to those of the original isolated nuclei (noncompetitive with respect to dCTP). On the other hand, the inhibitory mode was competitive with respect to dCTP in DNA synthesis in the reconstituted system obtained from the chromatin and purified DNA polymerase-alpha, indicating that some other factor(s) in addition to DNA polymerase-alpha is necessary for the reconstitution with reference to the inhibitory mode of aphidicolin. We also studied the template activity of the chromatin. When chromatin was used as a template, inhibition by aphidicolin of DNA polymerase-alpha was noncompetitive and uncompetitive with respect to the template at high and low concentrations, respectively. Treatment of chromatin with 5 M urea gave urea-treated chromatin (nonhistone protein-deprived chromatin) and the extract (mainly nonhistone protein fraction). Inhibition by aphidicolin of DNA polymerase-alpha was uncompetitive with respect to the urea-treated chromatin. However, when chromatin reconstituted from the urea-treated chromatin and the extract was used as a template, the inhibitory mode by aphidicolin was similar to that with original chromatin, indicating that the nonhistone protein fraction contained factor(s) which modified the inhibitory mode of aphidicolin. Thus, the inhibitory mode of aphidicolin is a useful parameter for monitoring the resolution and reconstitution of endogenous DNA synthesis of isolated nuclei.  相似文献   

16.
Small intestine cell nuclei incubated in sucrose media released large fractions of DNA into the culture medium. This effect was partially or completely suppressed when incubation was carried out in the presence of a protease inhibitor, 10 to 30 mM NaHSO3. The DNA released in sucrose media containing NaHSO3 was precipitated as a DNA-protein complex by increasing the bivalent ion concentration to 10 mM Ca2+ or 20 mM Mg2+. Most of the released DNA was not precipitated by Ca2+ or Mg2+ when incubation was performed without NaHSO3. As determined by viscosity measurements the mean molecular weight of the DNA released in the absence of NaHSO3 was from 3.5-8.0 x 10(5) and increased to about 11 x 10(5) (corresponding to 8 nucleosomes) when the incubation mixture contained NaHSO3. End group analysis indicated that the DNA segments were terminated by 3'-OH groups. It is suggested that fragmentation of DNA in chromatin was produced by a endogenous alkaline endonuclease activity which was present in the fraction of released DNA. The data support the view that the third-order repeat structure of chromatin consists of subunits containing 8 nucleosomes.  相似文献   

17.
Endogenous polymers of ADP-ribose are associated with the nuclear matrix   总被引:2,自引:0,他引:2  
The metabolism of nuclear polymers of ADP-ribose has been implicated in several chromatin-associated processes. However, the distribution of endogenous ADP-ribose polymers in the nucleus or within different fractions of chromatin has not been studied. Using a procedure which allowed the radiolabeling and detection of endogenous polymers of ADP-ribose, we have analyzed the nuclear distribution of these polymers in untreated cells and in cells subjected to hyperthermia, N-methyl-N'-nitro-N-nitrosoguanidine, or both. When isolated nuclei from cells subjected to any of these conditions were digested with micrococcal nuclease such that 80% of the DNA was released, 90% of the total poly(ADP-ribose) remained with the micrococcal nuclease resistant chromatin fraction. When nuclear matrix fractions were prepared by exhaustive DNase I digestion in combination with three different salt extraction procedures (2 M NaCl, 300 mM (NH4)2SO4 or 25 mM lithium diiodosalicylate), the matrices contained less than 1% of the total nuclear DNA but 50 to 70% of the total poly(ADP-ribose). These data suggest that the nuclear matrix may be a major site of poly(ADP-ribose) metabolism.  相似文献   

18.
Heat denaturation profiles of rat thymus DNA, in intact cells, reveal the presence of two main DNA fractions differing in sensitivities to heat. The thermosensitive DNA fraction shows certain properties similar to those of free DNA: its stability to heat is decreased by alcohols and is increased in the presence of the divalent cations Ca2+, Mn2+, or Mg2+ at concentrations of 0.1-1.0 mM. Unlike free DNA, however, this fraction denatures over a wide range of temperature, and is heterogeneous, consisting of at least two subfractions with different melting points. The thermoresistant DNA fraction shows lowered stability to heat in the presence of Ca2+, Mn2+, or Mg2+ and increased stability in the presence of alcohols. It denatures within a relatively narrow range of temperature, consists of at least three subfractions, and, most likely, represents DNA masked by histones. The effect of Ca2+, Mn2+, or Mg2+ in lowering the melting point of the thermoresistant DNA fraction is seen at cation concentrations comparable to those required to maintain gross chromatin structure in cell nuclei or to support superhelical DNA conformation in isolated chromatin (0.5-1.0 mM). It is probable that factors involved in the maintenance of gross chromatin organization in situ and/or related to DNA superhelicity also have a role in modulating DNA-histone interactions, and that DNA-protein interactions as revealed by conventional methods using isolated chromatin may be different from those revealed when gross chromatin morphology remains intact.  相似文献   

19.
20.
The minichromosome maintenance (MCM) complex, a replicative helicase, is a heterohexamer essential for DNA duplication and genome stability. We identified Schizosaccharomyces pombe mcb1(+) (Mcm-binding protein 1), an apparent orthologue of the human MCM-binding protein that associates with a subset of MCM complex proteins. mcb1(+) is an essential gene. Deletion of mcb1(+) caused cell cycle arrest after several generations with a cdc phenotype and disrupted nuclear structure. Mcb1 is an abundant protein, constitutively present across the cell cycle. It is widely distributed in cytoplasm and nucleoplasm and bound to chromatin. Co-immunoprecipitation suggested that Mcb1 interacts robustly with Mcm3-7 but not Mcm2. Overproduction of Mcb1 disrupted the association of Mcm2 with other MCM proteins, resulting in inhibition of DNA replication, DNA damage, and activation of the checkpoint kinase Chk1. Thus, Mcb1 appears to antagonize the function of MCM helicase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号