首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is important to understand the role that different predators can have to be able to predict how changes in the predator assemblage may affect the prey community and ecosystem attributes. We tested the effects of different stream predators on macroinvertebrates and ecosystem attributes, in terms of benthic algal biomass and accumulation of detritus, in artificial stream channels. Predator richness was manipulated from zero to three predators, using two fish and one crayfish species, while density was kept equal (n = 6) in all treatments with predators. Predators differed in their foraging strategies (benthic vs. drift feeding fish and omnivorous crayfish) but had overlapping food preferences. We found effects of both predator species richness and identity, but the direction of effects differed depending on the response variable. While there was no effect on macroinvertebrate biomass, diversity of predatory macroinvertebrates decreased with increasing predator species richness, which suggests complementarity between predators for this functional feeding group. Moreover, the accumulation of detritus was affected by both predator species richness and predator identity. Increasing predator species richness decreased detritus accumulation and presence of the benthic fish resulted in the lowest amounts of detritus. Predator identity (the benthic fish), but not predator species richness had a positive effect on benthic algal biomass. Furthermore, the results indicate indirect negative effects between the two ecosystem attributes, with a negative correlation between the amount of detritus and algal biomass. Hence, interactions between different predators directly affected stream community structure, while predator identity had the strongest impact on ecosystem attributes.  相似文献   

2.
雅鲁藏布江流域维系着丰富而独特的生物资源, 是全球生物多样性研究的热点区域。然而, 该流域底栖动物多样性的调查却极不充分。本文于2015年10月和2016年3月对雅鲁藏布江干流(朗县至墨脱段)和主要支流的底栖动物进行了调查, 并采用单因素方差分析(one-way ANOVA)和典范对应分析(canonical correspondence analysis)等对群落多样性格局进行解析。共采集到底栖动物270种, 隶属于5门8纲20目92科, 包括昆虫纲246种, 寡毛纲14种, 腹足纲4种, 其他动物6种。春季和秋季分别采集到底栖动物184种和214种, 优势种均以喜清洁和冷水的水生昆虫为主, 包括四节蜉属一种(Baetis sp.)、花翅蜉属一种(Baetiella sp.)、蚋属一种(Simulium sp.)、小突摇蚊属一种(Micropsetra sp.)和短石蛾属一种(Brachycentrus sp.)等。全流域平均密度为939.1 ind./m2,sp.)等。平均生物量为5.44 g/m2。底栖动物的物种组成、密度和多样性在季节和区域之间存在一定差异, 支流的多样性显著高于干流。典范对应分析显示, 海拔、流速、河宽和底质类型等环境因子是影响雅鲁藏布江流域底栖动物群落结构的关键环境因素, 而大峡谷地区多变的气候类型和地理阻隔是造成群落变化的根本原因。本研究可为雅鲁藏布江流域底栖动物多样性评估和环境监测提供重要的基础和参考。  相似文献   

3.
In urban areas with a separate sewerage system, the stormwater runoff is discharged into surface waters. A study on the effects of stormwater sewer discharges on the composition of the aquatic community in urban waters was carried out in two areas with a primarily residential use in the new town of Lelystad. The aquatic organisms considered included hydrophytes, epiphytic diatoms, filamentous algae and macroinvertebrates.The results indicate that the stormwater sewer discharges cause a slight change in the composition of the aquatic community. The water in the urban surface waters can be characterized as eutrophic and - toa-mesosaprobic. Near stormwater sewer outfalls the water tends to the more polluteda-mesosaprobic state. The shifts in the composition of the aquatic community could be traced primarily on the basis of a number of epiphytic diatoms and macroinvertebrates (in particular some Diptera and Trichoptera). Most hydrophytes, filamentous algae and the remaining epiphytic diatoms and macroinvertebrates (in particular water beetles and water mites) turned out to be of little or no use in this respect.Because the investigation was carried out in an unusually dry summer, the results probably underestimate the effects of stormwater discharges on the aquatic community.  相似文献   

4.
三峡库区不同水文类型支流大型底栖动物对蓄水的响应   总被引:1,自引:0,他引:1  
为探究三峡水库修建对库区不同水文类型支流大型底栖动物的影响,于2015年7月和2016年1月对三峡水库四条支流的大型底栖动物进行调研,分别对周期性受蓄水影响支流的非回水区与回水区和长期受蓄水影响支流的非回水区与回水区大型底栖动物群落结构进行比较研究,结果表明:⑴7月份三峡水库145米低水位时期共采集到底栖动物655头计59种(属),在受蓄水影响河段采集到底栖动物4种共40头,优势种为日本沼虾(占受蓄水影响区域的57.5%); 1月份三峡水库175米蓄水时期共采集到底栖动物1123头计69种(属),在受蓄水影响河段采集到16种238头,优势种为锯齿新米虾(占受蓄水影响区域的14.2%)。⑵周期性受蓄水影响支流的非回水区与回水区底栖动物密度、生物量和多样性指数无显著差异(P0.05);长期受蓄水影响支流的非回水区与回水区之间底栖动物密度和Pielou均匀度指数无显著差异(P0.05),但非回水区底栖动物生物量显著高于回水区(P0.05),底栖动物多样性和丰富度极显著高于回水区(P0.01)。⑶7月份影响底栖动物分布的主要环境因子共6个,分别是水深、流速、硝态氮、溶解氧、水温和电导率; 1月份影响底栖动物分布的主要环境因子共7个,分别是水温、溶解氧、总磷、流速、深度、电导率和透明度。  相似文献   

5.
The replacement of native forests by pastures takes place widely in the Andes. The effects of such land-use change on aquatic assemblages are poorly understood. We conducted a comparative analysis of the effects of forest conversion to pastures on the taxonomic, structural, and functional composition of macroinvertebrates (benthic and leaf-associated) in montane and upper montane streams (ecosystem type) of the south Ecuadorian Andes. Taxonomic composition of benthic and leaf-associated macroinvertebrates was different between ecosystem type and land use. Also, major differences in the structural and functional composition of benthic and leaf-associated macroinvertebrates were mainly promoted by land use in both ecosystem types. Forested streams showed higher diversity than pasture streams, sustaining more shredder, scraper, and predatory invertebrates. We also observed differences in the macroinvertebrate communities between benthic and leaf-bag samples. Leaf bags had lower diversity and more collector invertebrates than benthic samples. This study highlights the large effect of riparian forest conversion to pasture land on macroinvertebrate communities, and the importance of using appropriate sampling techniques to characterize aquatic assemblages. We also recommend the maintenance and restoration of riparian vegetation to mitigate the effects of deforestation on stream communities and ecosystem processes.  相似文献   

6.
典型河床底质组成中底栖动物群落及多样性   总被引:13,自引:1,他引:12  
段学花  王兆印  程东升 《生态学报》2007,27(4):1664-1672
底栖动物是河流生态系统中食物链的重要环节。通过对长江、黄河、东江和拒马河等河流野外调查和采样分析研究了河床底质组成对底栖动物群落结构的影响规律。研究结果发现,不同河床底质组成中的底栖动物结构差别很大,不同地理位置而相同底质条件和水力条件的河流底栖动物群落组成相似,说明河床底质是影响河流底栖动物群落结构的关键因素,受地理位置和大气候的影响不大;利用多项生物指标分析了不同河床底质组成中底栖动物群落的多样性,卵石河床且有水生植物生长的河流底栖动物物种组成最丰富,大河中沙质河床不稳定,未采集到底栖动物;不同底质类型河床中的优势种群亦不同。并分析了采样所得底栖动物物种数与采样面积之间的关系,符合前者随后者呈幂指数增加的规律,当实测采样面积为1~2m^2时物种数变化不大,建议一般情况下最小采样面积应为1m^2。  相似文献   

7.
Under the ongoing climate change, understanding the mechanisms structuring the spatial distribution of aquatic species in glacial stream networks is of critical importance to predict the response of aquatic biodiversity in the face of glacier melting. In this study, we propose to use metacommunity theory as a conceptual framework to better understand how river network structure influences the spatial organization of aquatic communities in glacierized catchments. At 51 stream sites in an Andean glacierized catchment (Ecuador), we sampled benthic macroinvertebrates, measured physico-chemical and food resource conditions, and calculated geographical, altitudinal and glaciality distances among all sites. Using partial redundancy analysis, we partitioned community variation to evaluate the relative strength of environmental conditions (e.g., glaciality, food resource) vs. spatial processes (e.g., overland, watercourse, and downstream directional dispersal) in organizing the aquatic metacommunity. Results revealed that both environmental and spatial variables significantly explained community variation among sites. Among all environmental variables, the glacial influence component best explained community variation. Overland spatial variables based on geographical and altitudinal distances significantly affected community variation. Watercourse spatial variables based on glaciality distances had a unique significant effect on community variation. Within alpine catchment, glacial meltwater affects macroinvertebrate metacommunity structure in many ways. Indeed, the harsh environmental conditions characterizing glacial influence not only constitute the primary environmental filter but also, limit water-borne macroinvertebrate dispersal. Therefore, glacier runoff acts as an aquatic dispersal barrier, isolating species in headwater streams, and preventing non-adapted species to colonize throughout the entire stream network. Under a scenario of glacier runoff decrease, we expect a reduction in both environmental filtering and dispersal limitation, inducing a taxonomic homogenization of the aquatic fauna in glacierized catchments as well as the extinction of specialized species in headwater groundwater and glacier-fed streams, and consequently an irreversible reduction in regional diversity.  相似文献   

8.
Benthic macroinvertebrates are an important indicator of river health. However, their response upon water quality development downstream the pollution outlets considerably depends on the environmental habitat characteristics. Three successive stretches, each of them providing three different mesohabitats in stillwater (S), torrential (T) and riparian (R) zones were selected for evaluation of the impact of altered metapotamal river bed morphology (channelization) and chemical determinants of water quality on the Upper Elbe River. In downstream direction, the stretches are separated by weirs and characterized as a low polluted low modified natural stream (N), a low polluted channelized stream (C) and a channelized polluted stream (CP). Altogether, 111 benthic macroinvertebrate taxa were recorded in the Pardubice hotspot between Němčice and Přelouč. Despite different levels of stream bed and water quality degradation, micro- and mesohabitat characteristics appeared to be the most important factors determining the diversity of macrozoobenthos in riffle (substrate size structure) and in shoreline (macrophyte community composition and structure) mesohabitats. The diversity of macroinvertebrate communities was highest in riparian mesohabitats compared to stillwater and torrential ones. Saprobic indices increased in downstream direction, thus indicating the decline of water quality.  相似文献   

9.
山地河流潜流层大型无脊椎动物群落组成及分布   总被引:1,自引:1,他引:0  
潜流层大型无脊椎动物是河流生态系统重要的组成部分.2013年8月(夏季)、12月(冬季)和2014年4月(春季),在黑水滩河上游河段,采用人工基质法调查潜流层大型无脊椎动物.结果表明: 3个季节共采集大型无脊椎动物27种,其中夏季22种、冬季和春季各16种,各季节水生昆虫种类所占比例均较高,分别为81.8%、75.0%和62.5%;夏季群落密度显著低于冬季和春季,春季最高;冬季群落生物量显著高于夏季和春季,夏季最低;3个季节群落的物种丰富度指数、Shannon多样性指数和Pielou均匀度指数均没有显著性差异.空间分布上,大型无脊椎动物的密度和丰富度均随潜流层深度增加而呈现降低的趋势,大多数个体均分布在0~20 cm深度.群落以滤食者和收集者组成的集食者为绝对优势功能群.动物的相互作用、生活史策略和潜流层的理化条件影响着潜流层大型无脊椎动物的群落结构和时空分布.  相似文献   

10.
In this study we examine the ecological responses of aquatic macrophytes and benthic macroinvertebrates to a trout farm effluent located in the upper Tajuña River (Guadalajara province, Central Spain), comparing the suitability of biological metrics and indices based on these two communities to assess trout farm pollution in the upper reaches of fluvial ecosystems. Sampling surveys were carried out in winter and summer 2006, and in spring 2007. Four sampling sites were selected along the study reach: S-1, placed upstream from the trout farm, was used as a reference station; S-2, S-3 and S-4 were placed about 10, 100 and 1000 m downstream from the trout farm outlet, respectively. The stream bottom was mainly stony with cobbles and pebbles at all sampling sites, except at S-2 where it was covered by a thick layer of organic sediment. Aquatic macrophytes and benthic macroinvertebrates significantly increased in abundance downstream from the trout farm effluent, particularly at S-3 and S-4. However, while the diversity of aquatic macrophytes increased downstream (at S-3 and S-4, but not at S-2), the diversity of benthic macroinvertebrates significantly decreased, particularly at S-2. Regarding aquatic macrophytes, moss coverage values, as well as values of the Index of Macrophytes (IM) and the Macroscopic Aquatic Vegetation Index (MAVI), were higher at S-1 than at S-2. In contrast, values of moss coverage and IM were significantly lower at S-1 than at S-3 and S-4. MAVI values were similar at S-1, S-3 and S-4. Regarding benthic macroinvertebrates, the abundance percentage of oligochaetes and chironomids (expressed as OC%) was significantly higher at downstream polluted sites (particularly at S-2) than at S-1. Conversely, the abundance percentage of ephemeropterans, plecopterans and trichopterans (expressed as EPT%), and scores of the total Biological Monitoring Water Quality (t-BMWQ) index and the average Biological Monitoring Water Quality (a-BMWQ) index were much lower at S-2 than at S-1, with a clear tendency to increase with increasing downstream distance from the trout farm. Correlation analyses showed that changes in physicochemical parameters (inorganic nutrients, dissolved oxygen and turbidity) along the study reach were better correlated with changes in metrics and indices based on benthic macroinvertebrates. Overall it is concluded that metrics and indices based on benthic macroinvertebrates (such as OC% and EPT% metrics and t-BMWQ and a-BMWQ indices) can be more suitable than those based on aquatic macrophytes for the biological monitoring of trout farm pollution in the upper reaches of fluvial ecosystems, since the higher diversity of benthic macroinvertebrates inhabiting the river bottom would permit this community to exhibit a better indicator performance regarding the environmental stress caused by trout farm effluents. However, further studies are needed in order to generalize this conclusion.  相似文献   

11.
We sampled chlorophyll a, benthic organic matter, and benthic macroinvertebrates in June 2001 in La Tordera stream (Catalonia, NE Spain), receiving a wastewater treatment plant (WWTP) input. Samples were collected in six equidistant transects in three reaches located upstream (UP), few m below (DW1), and 500 m below the WWTP input (DW2). Our first objective was to assess the effects of the point source on the structure and functional organization of the benthic macroinvertebrate community. Our second objective was to determine if the self-purifying capacity of the stream implied differences between the communities of the DW1 and the DW2 reaches. The WWTP input highly increased discharge, nutrient concentrations, and conductivity and decreased dissolved oxygen. At the DW1 and the DW2 reaches, taxa richness, EPT taxa (Ephemeroptera, Plecoptera, and Trichoptera), and Shannon diversity decreased and gatherer relative density increased relative to the UP reach. At the UP reach, CPOM and FPOM standing crops were similar, whereas at the DW1 and the DW2 reaches CPOM was two times higher than FPOM. Detailed analysis showed that major changes in the benthic community occurred abruptly between 80 and 90 m downstream of the point source (middle of the DW1 reach). At this location, chlorophyll a concentration, density of macroinvertebrates, taxa richness, and scraper relative density increased, whereas gatherer relative percentage decreased. The macroinvertebrate community at the DW2 reach was comparable to that at the second middle of the DW1 reach (DW1B). The macroinvertebrate community at the DW1B and the DW2 reaches were quite similar to that at the UP reach, indicating that the recovery capacity of the stream from nutrient enrichment was high.  相似文献   

12.
13.
Stream restoration affects stream biodiversity by improving water quality and habitat environments. Benthic macroinvertebrates are used as indicators of changes in stream environment, and, therefore, the effects of restoration can be evaluated by a long‐term monitoring of benthic macroinvertebrates. Cheonggye stream is an urban stream in Seoul, Korea, and a restoration project was conducted from July 2003 to September 2005. The purpose of this study was to investigate the long‐term changes in the benthic macroinvertebrate communities in Cheonggye stream after the restoration project in 2005. A 6‐year field study was seasonally conducted at five study sites in Cheonggye stream from November 2005 to October 2011. Benthic macroinvertebrates were sampled quantitatively using a Surber sampler (50 × 50 cm; mesh 0.25 mm, two replications per site). As a result, species richness of benthic macroinvertebrates rapidly increased after the restoration project and peaked (35 species per sample) in 2006 but gradually dropped to approximately 20 species up to the recent year. As a consequence, community indices changed gradually according to species richness and abundance: Dominance indices peaked in 2010 and species diversity indices (H') peaked in 2007. According to a functional feeding group analysis, the composition of collector–filterers increased at first, but the decreased gradually to the recent year. In contrast, collector–gatherers showed an opposite tendency. The composition of clingers increased during the initial 4 years (2005–2008), whereas burrowers rapidly increased after 2008.  相似文献   

14.
To test the hypothesis whether afforestation with Eucalyptus globulus affects litter dynamics in streams and the structure of macroinvertebrate aquatic communities, we compared streams flowing through eucalyptus and deciduous forests, paying attention to: (i) litterfall dynamics, (ii) accumulation of organic matter, (iii) processing rates of two dominant leaf species: eucalyptus and chestnut, and (iv) macroinvertebrate community structure. The amount of allochthonous inputs was similar in both vegetation types, but the seasonality of litter inputs differed between eucalyptus and natural deciduous forests. Eucalyptus forest streams accumulated more organic matter than deciduous forest streams. Decomposition of both eucalyptus and chestnut leaf litter was higher in streams flowing through deciduous forests. The eucalyptus forest soils were highly hydrophobic resulting in strong seasonal fluctuations in discharge. In autumn the communities of benthic macroinvertebrates of the two stream types were significantly different. Deciduous forest streams contained higher numbers of invertebrates and more taxa than eucalyptus forest streams. Mixed forest streams (streams flowing through eucalyptus forests but bordered by deciduous vegetation) were intermediate between the two other vegetation types in all studied characteristics (accumulation of benthic organic matter, density and diversity of aquatic invertebrates). These results suggest that monocultures of eucalyptus affect low order stream communities. However, the impact may be attenuated if riparian corridors of original vegetation are kept in plantation forestry.  相似文献   

15.
Woody debris (CWD) is an important habitat component in northern Gulf of Mexico coastal plain streams, where low gradients and low flows allow accumulation of CWD and promote low dissolved oxygen (DO) concentrations. We tested the influences of CWD and DO on stream macroinvertebrates experimentally by placing two surface area CWD treatments each in three concentrations of ambient DO in two streams in Louisiana, USA, with macroinvertebrates collected from ambient woody debris used as a control. We also sampled macroinvertebrates in benthic and woody debris habitats in three streams twice yearly over 2 years to examine the applicability of the experimental results. Total abundance, richness (generic), and Shannon–Wiener diversity were all higher in lower DO conditions during the experiment, and total abundance was higher in the larger CWD treatment. Stream sampling corroborated the relationship between higher diversity and low DO in both benthic and woody debris habitats, but the relationship between richness and low DO only was supported in benthic habitats. Few taxa correlated with DO or CWD in the experiment (5 of 21 taxa) or stream survey (2 of 54 taxa). Whereas most taxa were uncorrelated with experimentally manipulated and in-stream measured variables, we suggest these taxa respond as generalists to stream habitat and physicochemistry. Based on this experiment and stream sampling, we believe the majority of macroinvertebrates in these streams are tolerant of seasonally low DO conditions.  相似文献   

16.
Watershed-scale anthropogenic stressors have profound effects on aquatic communities. Although several functional traits of stream macroinvertebrates change predictably in response to land development and urbanization, little is known about macroinvertebrate functional responses in lakes. We assessed functional community structure, functional diversity (Rao’s quadratic entropy) and voltinism in macroinvertebrate communities sampled across the full gradient of anthropogenic stress in Laurentian Great Lakes coastal wetlands. Functional diversity and voltinism significantly decreased with increasing development, whereas agriculture had smaller or non-significant effects. Functional community structure was affected by watershed-scale development, as demonstrated by an ordination analysis followed by regression. Because functional community structure affects energy flow and ecosystem function, and functional diversity is known to have important implications for ecosystem resilience to further environmental change, these results highlight the necessity of finding ways to remediate or at least ameliorate these effects.  相似文献   

17.
1. We examined the response of a predatory benthic fish, the longnose dace ( Rhinichthys cataractae ), to patchiness in the distribution of benthic macroinvertebrates on cobbles at three hierarchical spatial scales during summer and autumn 1996, and spring 1997 in a southern Appalachian stream. 2. At the primary scale (four to five individual cobbles separated by <1 m), the intensity of foraging was not correlated with the biomass of benthic macroinvertebrates/cobble, regardless of season. 3. At the secondary scale (i.e. foraging patches <5 m in diameter) we found that benthic macroinvertebrates were patchily distributed in summer, but not in autumn or spring. Concomitantly, in summer, longnose dace foraged on cobbles with a significantly higher biomass of benthic macronvertebrates than nearby, randomly selected cobbles with similar physical conditions (i.e. longnose dace tended to avoid low-prey foraging patches). In contrast, when benthic macroinvertebrates were distributed homogeneously (spring and autumn), dace did not select patches with a significantly higher biomass of benthic macroinvertebrates than that available on randomly selected cobbles. 4. At the tertiary scale (i.e. stream reaches 11–19 m long), the biomass of benthic macroinvertebrates (per cobble per reach) was patchily distributed (i.e. differed significantly among reaches) in all seasons. Among reaches with physical characteristics preferred by longnose dace, (i.e. erosional reaches dominated by cobble/boulder substratum and high current velocity), we detected a significant, positive correlation between the biomass of benthic macroinvertebrates/cobble and longnose dace density in all seasons. 5. Our results demonstrated that both spatial and temporal patchiness in resource availability influenced significantly the use of both foraging patches and stream reaches by longnose dace.  相似文献   

18.
Variable effects of sediment addition on stream benthos   总被引:7,自引:7,他引:0  
Two upper Piedmont streams were studied to determine the effects of road construction, especially sediment inputs. Benthic macroinvertebrate data suggest that the stream community responded to sediment additions in two different ways. Under high flow conditions the benthic fauna occurs mainly on rocky substrates. As sediment is added to a stream the area of available rock habitat decreases, with a corresponding decrease in benthic density. There is, however, little change in community structure. Under low flow conditions, stable-sand areas may support high densities of certain taxa. Density of the benthic macroinvertebrates in these areas may be much greater than the density recorded in control areas, and there are distinct changes in community structure.  相似文献   

19.
Hydrobiologia - Organism biomass, a continuous quantity, may be useful for general community and diversity assessment. Body length and biomass of benthic macroinvertebrates from two aquatic...  相似文献   

20.
The ecological responses of aquatic macrophytes and benthic macroinvertebrates to deep-release dams in three impounded rivers of the Henares River Basin (Central Spain) were studied, specially focusing on the effects of nutrient enrichment caused by deep releases on these two freshwater communities. Three sampling sites, one upstream and two downstream from the reservoir, were established in each impounded river. Sampling surveys to collect submersed macrophytes and benthic macroinvertebrates at each sampling site were carried out in spring–summer of 2009 and 2011. Water temperature tended to decrease downstream from dams, whereas nitrate and phosphate concentrations tended to increase. These abiotic changes, particularly the downstream nutrient enrichment, apparently affected the macrophyte and macroinvertebrate communities. In the case of submersed macrophytes, total coverage and taxa richness increased downstream from dams. In the case of benthic macroinvertebrates, total density and total biomass also increased downstream, but taxa richness tended to decrease. Scrapers appeared to be the macroinvertebrate feeding group most favored downstream from dams as a probable consequence of the positive effect of nutrient enrichment on periphyton and perilithon abundance. Nutrients would ultimately come from water runoff over agricultural lands and over semi-natural forests and pastures, being subsequently accumulated in the hypolimnion of reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号