首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Human acute promyelocytic leukemias (APLs) are associated with chromosomal translocations that replace the NH2 terminus of wild-type retinoic acid receptor (RAR) alpha with portions of the promyelocytic leukemia protein (PML) or promyelocytic leukemia zinc-finger protein (PLZF). The wild-type RARalpha readily forms heterodimers with the retinoid X receptors (RXRs), and these RAR/RXR heterodimers appear to be the principal mediators of retinoid signaling in normal cells. In contrast, PML-RARalpha and PLZF-RARa display an enhanced ability to form homodimers, and this enhanced homodimer formation is believed to contribute to the neoplastic properties of these chimeric oncoproteins. We report here that the DNA recognition specificity of the RXRalpha/RARa heterodimer, which is presumed to be the dominant receptor species in normal cells, differs from that of the PML-RARalpha and PLZF-RARalpha homodimers, which are thought to prevail in the oncogenic cell. We suggest that differences in target gene recognition by the normal and oncogenic RARalpha proteins may contribute to the leukemogenic phenotype.  相似文献   

2.
3.
The t(15;17) translocation, found in 95% of acute promyelocytic leukemia, encodes a promyelocytic leukemia (PML)-retinoic acid receptor alpha (RARalpha) fusion protein. Complete remission of acute promyelocytic leukemia can be obtained by treating patients with all-trans retinoic acid, and PML-RARalpha plays a major role in mediating retinoic acid effects in leukemia cells. A main model proposed for acute promyelocytic leukemia is that PML-RARalpha exerts its oncogenic effects by repressing the expression of retinoic acid-inducible genes critical to myeloid differentiation. By applying subtraction cloning to acute promyelocytic leukemia cells, we identified a retinoic acid-induced gene, PRAM-1 (PML-RARalpha target gene encoding an Adaptor Molecule-1), which encodes a novel adaptor protein sharing structural homologies with the SLAP-130/fyb adaptor. PRAM-1 is expressed and regulated during normal human myelopoiesis. In U937 myeloid precursor cells, PRAM-1 expression is inhibited by expression of PML-RARalpha in the absence of ligand and de novo superinduced by retinoic acid. PRAM-1 associates with other adaptors, SLP-76 and SKAP-55HOM, in myeloid cell lines and with protein tyrosine kinase lyn. By providing the first evidence that PML-RARalpha dysregulates expression of an adaptor protein, our data open new insights into signaling events that are disrupted during transformation by PML-RARalpha and induced by retinoic acid during de novo differentiation of acute promyelocytic leukemia cells.  相似文献   

4.
Two critical hits for promyelocytic leukemia   总被引:10,自引:0,他引:10  
  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Fusion proteins involving the retinoic acid receptor alpha (RARalpha) and PML or PLZF nuclear protein are the genetic markers of acute promyelocytic leukemia (APL). APLs with PML-RARalpha or PLZF-RARalpha fusion protein differ only in their response to retinoic acid (RA) treatment: the t(15;17) (PML-RARalpha-positive) APL blasts are sensitive to RA in vitro, and patients enter disease remission after RA treatment, while those with t(11;17) (PLZF-RARalpha-positive) APLs do not. Recently it has been shown that complete remission can be achieved upon treatment with arsenic trioxide (As2O3) in PML-RARalpha-positive APL, even when the patient has relapsed and the disease is RA resistant. This appears to be due to apoptosis induced by As2O3 in the APL blasts by poorly defined mechanisms. Here we report that (i) As2O3 induces apoptosis only in cells expressing the PML-RARalpha, not the PLZF-RARalpha, fusion protein; (ii) PML-RARalpha is partially modified by covalent linkage with a PIC-1/SUMO-1-like protein prior to As2O3 treatment, whereas PLZF-RARalpha is not; (iii) As2O3 treatment induces a change in the modification pattern of PML-RARalpha toward highly modified forms; (iv) redistribution of PML nuclear bodies (PML-NBs) upon As2O3 treatment is accompanied by recruitment of PIC-1/SUMO-1 into PML-NBs, probably due to hypermodification of both PML and PML-RARalpha; (v) As2O3-induced apoptosis is independent of the DNA binding activity located in the RARalpha portion of the PML-RARalpha fusion protein; and (vi) the apoptotic process is bcl-2 and caspase 3 independent and is blocked only partially by a global caspase inhibitor. Taken together, these data provide novel insights into the mechanisms involved in As2O3-induced apoptosis in APL and predict that treatment of t(11;17) (PLZF-RARalpha-positive) APLs with As2O3 will not be successful.  相似文献   

15.
Heparanase is a heparan sulfate-degrading endoglycosidase expressed by mature monocytes and myeloid cells, but not by immature hematopoietic progenitors. Heparanase gene expression is upregulated during differentiation of immature myeloid cells. PML-RARalpha and PLZF-RARalpha fusion gene products associated with acute promyelocytic leukemia abrogate myeloid differentiation and heparanase expression. AML-Eto, a translocation product associated with AML FAB M2, also downregulates heparanase gene expression. The common mechanism that underlines the activity of these three fusion gene products involves the recruitment of histone deacetylase complexes to specific locations within the DNA. We found that retinoic acid that dissociates PML-RARalpha from the DNA, and which is used to treat acute promyelocytic leukemia patients, restores heparanase expression to normal levels in an acute promyelocytic leukemia cell line. The retinoic acid effects were also observed in primary acute promyelocytic leukemia cells and in a retinoic acid-treated acute promyelocytic leukemia patient. Histone deacetylase inhibitor reverses the downregulation of heparanase expression induced by the AML-Eto fusion gene product in M2 type AML. In summary, we have characterized a link between leukomogenic factors and the downregulation of heparanase in myeloid leukemic cells.  相似文献   

16.
17.
18.
In acute promyelocytic leukemia (APL) cells harboring the promyelocytic leukemia retinoic acid receptor alpha (PML-RARalpha) chimeric protein, retinoic acid (RA)-induced differentiation is triggered through a PML-RARalpha signaling resulting in activation of critical target genes. Induced differentiation of APL cells is always preceded by withdrawal from the cell cycle and commitment events leading to terminal differentiation. Here we have identified the human ankyrin repeat-containing protein with a suppressor of cytokine signaling box-2 (ASB-2) cDNA, as a novel RA-induced gene in APL cells. PML-RARalpha strongly enhanced RA-induced ASB-2 mRNA expression. In myeloid leukemia cells, ASB-2 expression induced growth inhibition and chromatin condensation recapitulating early events critical to RA-induced differentiation of APL cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号