首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ghrelin is a new orexigenic and adipogenic peptide primarily produced by the stomach and the hypothalamus. In the present experiment, we determined the circulating ghrelin levels in 60-week old fa/fa Zucker rats with a well-established obesity (n = 12) and in their lean (FA/FA) counterparts (n = 12). We also tested the feeding response of both groups to intra-peritoneal (I.P.) injection of ghrelin agonist and antagonist. Obese rats ate significantly more than the lean rats (21.7 +/- 1.1 vs. 18.3 +/- 0.3 g/day; p < 0.01). Their plasma ghrelin concentration was 35% higher than that in the lean homozygous rats (p < 0.025). GHRP-6 (1 mg/kg I.P, a GHS-R agonist) stimulated food intake in lean but not in obese rats (p < 0.01), whereas [D-Lys)]-GHRP-6 (12 mg/kg I.P., a GHS-R antagonist) decreased food intake in both groups (p < 0.0001). These results indicate that the obese Zucker rat is characterized by an increase in plasma ghrelin concentrations and by an attenuated response to a GHS-R agonist. They support a role for ghrelin in the development of obesity in the absence of leptin signaling.  相似文献   

2.
Ghrelin is an orexigenic brain-gut hormone promoting feeding and regulating energy metabolism in human and rodents. An increasing number of studies have reported that ghrelin and its identified receptor, the growth hormone secretagogue receptor 1a (GHS-R1a), produces remarkably wide and complex functions and biological effects on specific populations of neurons in central nervous system. In this study, we sought to explore the in vivo effects of acute ghrelin exposure on lateral amygdala (LA) neurons at the physiological and behavioral levels. In vivo extracellular single-unit recordings showed that ghrelin with the concentration of several nanomolars (nM) stimulated spontaneous firing of the LA neurons, an effect that was dose-dependent and could be blocked by co-application of a GHS-R1a antagonist D-Lys3-GHRP-6. We also found that D-Lys3-GHRP-6 inhibited spontaneous firing of the LA neurons in a dose-dependent manner, revealing that tonic GHS-R1a activity contributes to orchestrate the basal activity of the LA neurons. Behaviorally, we found that microinfusion of ghrelin (12 ng) into LA before training interfered with the acquisition of conditioned taste aversion (CTA) as tested at 24 h after conditioning. Pre-treatment with either purified IgG against GHS-R1a or GHS-R1a antagonist blocked ghrelin’s effect on CTA memory acquisition. Ghrelin (12 ng) had no effect on CTA memory consolidation or the expression of acquired CTA memory; neither did it affect the total liquid consumption of tested rats. Altogether, our data indicated that ghrelin locally infused into LA blocks acquisition of CTA and its modulation effects on neuronal firing may be involved in this process.  相似文献   

3.
ACh-induced endothelium-dependent relaxation in rabbit small mesenteric arteries is resistant to N-nitro-L-arginine (L-NA) and indomethacin but sensitive to high K+, indicating the relaxations are mediated by endothelium-derived hyperpolarizing factors (EDHFs). The identity of the EDHFs in this vascular bed remains undefined. Small mesenteric arteries pretreated with L-NA and indomethacin were contracted with phenylephrine. ACh (10(-10) to 10(-6) M) caused concentration-dependent relaxations that were shifted to the right by lipoxygenase inhibition and the Ca(2+)-activated K+ channel inhibitors apamin (100 nM) or charybdotoxin (100 nM) and eliminated by the combination of apamin plus charybdotoxin. Relaxations to ACh were also blocked by a combination of barium (200 microM) and apamin but not barium plus charybdotoxin. Addition of K+ (10.9 mM final concentration) to the preconstricted arteries elicited small relaxations. K+ addition before ACh restored the charybdotoxin-sensitive component of relaxations to ACh. K+ (10.9 mM) also relaxed endothelium-denuded arteries, and the relaxations were inhibited by barium but not by charybdotoxin and apamin. With the use of whole cell patch-clamp analysis, ACh (10(-7) M) stimulated voltage-dependent outward K+ current from endothelial cells, which was inhibited by charybdotoxin, indicating K+ efflux. Arachidonic acid (10(-7) to 10(-4) M) induced concentration-related relaxations that were inhibited by apamin but not by charybdotoxin and barium. Addition of arachidonic acid after K+ (10.9 mM) resulted in more potent relaxations to arachidonic acid compared with control without K+ (5.9 mM). These findings suggest that, in rabbit mesenteric arteries, ACh-induced, L-NA- and indomethacin-resistant relaxation is mediated by endothelial cell K+ efflux and arachidonic acid metabolites, and a synergism exists between these two separate mechanisms.  相似文献   

4.
The purpose of the present study was to identify the role of age, nutritional state and some metabolic hormones in control of avian hypothalamic and ovarian ghrelin/ghrelin receptor system. We examined the effect of food restriction, administration of ghrelin 1–18, ghrelin antagonistic analogue (D-Lys-3)-GHRP-6, obestatin and combinations of them on the expression of ghrelin and ghrelin receptor (GHS-R1a) in hypothalamus and ovary of old (23 months of age) and young (7 months of age) chickens. Expression of mRNAs for ghrelin and GHS-R1a in both hypothalamus and largest ovarian follicle was measured by RT-PCR. It was observed that food restriction could promote the expression of ghrelin and GHS-R1a in hypothalamus and ovary of the old chickens, but in the young chickens it reduced expression of ghrelin and did not affect expression of GHS-R1a in the ovary. Administration of ghrelin 1–18 did not affect hypothalamic or ovarian ghrelin mRNA, but significantly increased the expression of GHS-R1a in hypothalamus, but not in ovary. (D-Lys-3)-GHRP-6, significantly stimulated accumulation of ghrelin, but not GHS-R1a mRNA in hypothalamus or ghrelin or GHS-R1a in the ovary. Ghrelin 1–18 and (D-Lys-3)-GHRP-6, when given together, were able either to prevent or to induce effect of these hormones. Obestatin administration increased expression of ghrelin gene in the hypothalamus, but not expression of hypothalamic GHS-R1a, ovarian ghrelin and GHS-R1a. Furthermore, obestatin was able to modify effect of both ghrelin and fasting on hypothalamic and ovarian mRNA for ghrelin GHS-R1a. Our results (1) confirm the existence of ghrelin and its functional receptors GHS-R1a in the chicken hypothalamus and ovary (2) confirm the age-dependent control of ovarian ghrelin by feeding, (3) demonstrate, that nutritional status can influence the expression of both ghrelin and GHS-R1a in hypothalamus and in the ovary (3) demonstrates for the first time, that ghrelin can promote generation of its functional receptor in the hypothalamus, but not in the ovary, (4) show that ghrelin1–18 and (D-Lys-3)-GHRP-6 could not only be antagonists in the action on chicken hypothalamus and ovaries, but also independent regulators and even agonists, and (5) provide first evidence for action of obestatin on hypothalamic ghrelin and on the response of hypothalamic and ovarian ghrelin/GHS-R1a system to food restriction. These data indicate the involvement of both hypothalamic and ovarian ghrelin/GHS-R1 systems in mediating the effects of nutritional status, ghrelin and obestatin on reproductive processes.  相似文献   

5.
Ghrelin exhibits its biological effect through binding to the growth hormone secretagogue 1a receptor (GHS-R1a). Recently, it has been reported that ghrelin has an anti-apoptotic effect in several cell types. However, the molecule mechanisms underlying the anti-apoptotic effect of ghrelin remain poorly understood. In this study, we investigated the intracellular mechanisms responsible for anti-apoptotic effect of ghrelin on human umbilical vein endothelial cells (HUVEC). Treatment of HUVEC with ghrelin inhibited high glucose-induced cell apoptosis. Ghrelin stimulated the rapid phosphorylation of mammalian target of rapamycin (mTOR), P70S6K and S6. The GHS-R1a-specific antagonist [D-Lys3]-GHRP-6 abolished the anti-apoptotic effect and inhibited the activation of mTOR, P70S6K, S6 induced by ghrelin. Pretreatment of cells with specific inhibitor of mTOR blocked the anti-apoptotic effect of ghrelin. In addition, ghrelin protected HUVECs against high glucose induced apoptosis by increasing Bcl-2/Bax ratio. Taken together, our results demonstrate that ghrelin produces a protective effect on HUVECs through activating GHS-R1a and mTOR/P70S6K signaling pathway mediates the effect of ghrelin. These observations suggest that ghrelin may act as a survival factor in preventing HUVECs apoptosis caused by high glucose.  相似文献   

6.
Recent reports suggest that Atrogin-1 and MuRF1, E3 ubiquitin ligases, play a pivotal role in muscle atrophy. In the present study, effect of Growth Hormone Releasing Peptide-2 (GHRP-2), a GH secretagogue receptor (GHS-R) agonist, on the expressions of Atrogin-1 and MuRF1 in vivo rat muscles was examined. Dexamethasone administration increased Atrogin-1 mRNA level in rat soleus muscle. The increased mRNA level of Atrogin-1 was significantly attenuated by GHRP-2. In addition, GHRP-2 decreased MuRF1 mRNA level irrespective of the presence of dexamethasone. Although IGF-I is a well-known protective factor for muscle atrophy, GHRP-2 did not influence plasma IGF-I levels and IGF-I mRNA levels in muscles. To clarify a direct effect of GHRP-2, differentiated C2C12 myocytes were used. Ten micrometer dexamethasone increased both Atrogin-1 and MuRF1 mRNA levels in C2C12 cells. GHRP-2 attenuated dexamethasone-induced expression of them dose-dependently and decreased the basal level of MuRF1 mRNA. The suppressive effect on the expressions of Atrogin-1 and MuRF1 by GHRP-2 was blocked by [D-Lys(3)]-GHRP-6, a GHS-R1a blocker, suggesting the effect of GHRP-2 was mediated through GHS-R1a. Taken together, GHRP-2 directly attenuates Atrogin-1 and MuRF1 mRNA levels through ghrelin receptors in myocytes.  相似文献   

7.
Ghrelin and obestatin are two proteins that originate from post-translational processing of the preproghrelin peptide. Various authors claim an opposed role of ghrelin and obestatin in several systems. Preproghrelin mRNA is significantly expressed in airway epithelium throughout lung development, predominantly during the earliest stages. The aim of this study was to evaluate the role of ghrelin and obestatin in fetal lung development in vitro. Immunohistochemistry studies were performed at different gestational ages in order to clarify the expression pattern of ghrelin, GHS-R1a, obestatin and GPR39 during fetal lung development. Fetal rat lung explants were harvested at 13.5 days post-conception (dpc) and cultured during 4 days with increasing doses of total ghrelin, acylated ghrelin, desacyl-ghrelin, ghrelin antagonist (D-Lys(3)-GHRP-6) or obestatin. Immunohistochemistry studies demonstrated that ghrelin, GHS-R1a, obestatin and GPR39 proteins were expressed in primitive rat lung epithelium throughout all studied gestational ages. Total and acylated ghrelin supplementation significantly increased the total number of peripheral airway buds, whereas desacyl-ghrelin induced no effect. Moreover, GHS-R1a antagonist significantly decreased lung branching. Finally, obestatin supplementation induced no significant effect in the measured parameters. The present study showed that ghrelin has a positive effect in fetal lung development through its GHS-R1a receptor, whereas obestatin has no effect on lung branching.  相似文献   

8.
Kitazawa T  Kaiya H  Taneike T 《Peptides》2007,28(3):617-624
Ghrelin is an endogenous ligand for growth hormone secretagogue receptor (GHS-R), and it stimulates growth hormone (GH) release, food intake and gastrointestinal motility in mammals. Ghrelin has also been identified in the chicken, but this peptide inhibits food intake in the chicken. We examined the effects of ghrelin and related peptides on contractility of the isolated chicken gastrointestinal tract in vitro. Among ghrelin-related peptides examined (1 microM of rat ghrelin, human ghrelin, chicken ghrelin and growth hormone releasing peptide-6 (GHRP-6)), only chicken ghrelin was effective on contraction of the chicken gastrointestinal tract. Des-acyl chicken ghrelin was ineffective, suggesting that octanoylation at Ser3 residue of chicken ghrelin was essential for inducing the contraction. Amplitude of chicken ghrelin-induced contraction was region-specific: highest in the crop and colon, moderate in the esophagus and proventriculus, and weak in the small intestine. The contractile response to chicken ghrelin in the crop was not affected by tetrodotoxin (TTX), but that in the proventriculus was decreased by TTX and atropine to the same extents. D-Lys3-GHRP-6 (a GHS-R antagonist) caused a transient contraction and inhibited the effect of chicken ghrelin without affecting the high-K+-induced contraction. Chicken ghrelin potentiated electrical field stimulation-induced cholinergic contraction without affecting the responsiveness to bath-applied carbachol in the proventriculus. The location of GHS-R differs in the crop (smooth muscle) and proventriculus (smooth muscle and enteric neurons). These results indicate that ghrelin has contractile activity on gastrointestinal tract in the chicken in vitro, and the effect was region-specific. The action would be mediated through the GHS-R, which is highly sensitive to chicken ghrelin.  相似文献   

9.
Recent studies demonstrate that ghrelin can be an endogenous regulator of angiogenesis. We studied direct effects of human acylated (hAG) and unacylated (hUAG) ghrelin, as well as of rat acylated ghrelin (rAG) on the growth of HECa10 murine endothelial cells. Ghrelin was applied separately or together with D-Lys3-GHRP-6, which is commonly used as an antagonist of ghrelin receptor type 1a – GHS-R1a. The growth of HECa10 cells was assessed with Mosmann and in selected study conditions also with BrdU and TUNEL methods. Both hAG and hUAG (10−5 M to 10−12 M) inhibited the growth of HECa10 cells in 24 h and 72 h cultures. Similarly, rAG decreased the growth of the cells after 24 h (10−7 M and 10−11 M), and after 72 h (10−7 M, 10−8 M and 10−11 M). Unexpectedly, D-Lys3-GHRP-6 itself also inhibited the growth of these cells at 10−4 to 10−6 M in 24 h, 48 h (dose–response effect) and 72 h cultures. D-Lys3-GHRP-6 did not modify the inhibitory effect of rAG. However, D-Lys3-GHRP-6 at the concentration of 10−4 M diminished, abolished or even reversed the inhibitory effect of hUAG in 72 h culture and this was dependent on ghrelin concentrations. These data indicate that both AG and UAG have antiangiogenic properties at least at the level of endothelial growth, through decreased metabolic activity of the cells or stimulation of apoptosis. D-Lys3-GHRP-6 (inhibitor of GHS-R1a) seems not to be an appropriate antagonist in this experimental condition. Similar effects of these substances on HECa10 cells suggest that they are not mediated by GHS-R1a.  相似文献   

10.
In the present study using rats, we demonstrated that central and peripheral administration of des-acyl ghrelin induced a decrease in the surface temperature of the back, and an increase in the surface temperature of the tail, although the effect of peripheral administration was less marked than that of central administration. Furthermore, these effects of centrally administered des-acyl ghrelin could not be prevented by pretreatment with [D-Lys3]-GHRP-6 GH secretagogue receptor 1a (GHS-R1a) antagonists. Moreover, these actions of des-acyl ghrelin on body temperature were inhibited by the parasympathetic nerve blocker methylscopolamine but not by the sympathetic nerve blocker timolol. Using immunohistochemistry, we confirmed that des-acyl ghrelin induced an increase of cFos expression in the median preoptic nucleus (MnPO). Additionally, we found that des-acyl ghrelin dilated the aorta and tail artery in vitro. These results indicate that centrally administered des-acyl ghrelin regulates body temperature via the parasympathetic nervous system by activating neurons in the MnPO through interactions with a specific receptor distinct from the GHS-R1a, and that peripherally administered des-acyl ghrelin acts on the central nervous system by passing through the blood–brain barrier, whereas it exerts a direct action on the peripheral vascular system.  相似文献   

11.
12.
Ghrelin is expressed in normal human adrenocortical cells and induces their proliferation through growth hormone secretagogue receptor 1a (GHS-R1a). Consequently, it was of interest to us to determine whether acylated ghrelin and its predominant serum isoform, unacylated ghrelin, also act as factors for adrenocortical carcinoma cell growth. To examine a potential ghrelin-regulated system in adrenocortical tumors, we measured proliferative effects of acylated and unacylated ghrelin in the adrenocortical carcinoma cell lines SW-13 and NCI-H295R. We also examined the expression of ghrelin, GHS-R1a, and corticotrophin-releasing factor receptor 2 (CRF-R2). Acylated and unacylated ghrelin in the nanomolar range dose-dependently induced adrenocortical cell growth up to 200% of untreated controls, as measured by thymidine uptake and WST1 assay. The proliferative effects of acylated and unacylated ghrelin in SW-13 cells was blocked by [D-Lys(3)]growth hormone-releasing peptide 6 (GHRP6), but a CRF-R2 antagonist had no effect on unacylated ghrelin growth stimulation. Cell cycle analysis suggests that acylated and unacylated ghrelin suppress the sub-G(0)/apoptotic fraction by up to 50%. Measurement of DNA fragmentation and caspase-3 and -7 activity in SW-13 cells confirmed that acylated and unacylated ghrelin suppress apoptotic rate. SW-13 cells express preproghrelin mRNA and secrete ghrelin, and [D-Lys(3)]GHRP6 suppresses their basal proliferation rate, strongly suggesting that ghrelin could act as an auto/paracrine growth factor. Acylated and unacylated ghrelin are potential auto/paracrine factors acting through an antiapoptotic pathway to stimulate adrenocortical tumor cell growth. Unacylated ghrelin-stimulated growth is suppressed by an antagonist of GHS-R1a, suggesting either that unacylated ghrelin is acylated before its action or that ghrelin, unacylated ghrelin, and [D-Lys(3)]GHRP-6 bind to a novel receptor in these cells.  相似文献   

13.
Intracerebroventricular (ICV) administration of ghrelin, orexin and neuropeptide Y (NPY) stimulates food intake in goldfish. Orexin and NPY interact with each other in the regulation of feeding, while ghrelin-induced feeding has also shown to be mediated by NPY in the goldfish model. To investigate the interaction between ghrelin and orexin, we examined the effects of a selective orexin receptor-1 antagonist, SB334867, and a growth hormone secretagogue-receptor antagonist, [D-Lys(3)]-GHRP-6, on ghrelin- and orexin-A-induced feeding. Ghrelin-induced food intake was completely inhibited for 1h following ICV preinjection of SB334867, while [D-Lys(3)]-GHRP-6 attenuated orexin-A stimulated feeding. Furthermore, ICV administration of ghrelin or orexin-A at a dose sufficient to stimulate food intake increased the expression of each other's mRNA in the diencephalon. These results indicate that, in goldfish, ghrelin and orexin-A have interacting orexigenic effects in the central nervous system. This is the first report that orexin-A-induced feeding is mediated by the ghrelin signaling in any animal model.  相似文献   

14.
Endothelin (ET)-1 acts on ETA and ETB receptors. The latter include ETB1 (endothelial) and ETB2 (muscular) subtypes, which mediate opposite effects on vascular tone. This study investigated, in rabbit papillary muscles (n = 84), the myocardial effects of ETB stimulation. ET-1 (10(-9) M) was given in the absence or presence of BQ-123 (ETA antagonist). The effects of IRL-1620 (ETB1 agonist, 10(-10)-10(-6) M) or sarafotoxin S6c (ETB agonist, 10(-10)-10(-6) M) were evaluated in muscles with intact or damaged endocardial endothelium (EE); intact EE, in the presence of NG-nitro-L-arginine (L-NNA); and intact EE, in the presence of indomethacin (Indo). Sarafotoxin S6c effects were also studied in the presence of BQ-788 (ETB2 antagonist). ET-1 alone increased 64 +/- 18% active tension (AT) but decreased it by 4 +/- 2% in the presence of BQ-123. In muscles with intact EE, sarafotoxin S6c alone did not significantly alter myocardial performance. Sarafotoxin S6c (10(-6) M) increased, however, AT by 120 +/- 27% when EE was damaged and by 39 +/- 8% or 23 +/- 6% in the presence of l-NNA or Indo, respectively. In the presence of BQ-788, sarafotoxin S6c decreased AT (21 +/- 3% at 10(-6) M) in muscles with intact EE, an effect that was abolished when EE was damaged. IRL-1620 also decreased AT (22 +/- 3% at 10(-6) M) in muscles with intact EE, an effect that was abolished when EE was damaged or in the presence of L-NNA or Indo. In conclusion, the ETB-mediated negative inotropic effect is presumably due to ETB1 stimulation, requires an intact EE, and is mediated by NO and prostaglandins, whereas the ETB-mediated positive inotropic effect, observed when EE was damaged or NO and prostaglandins synthesis inhibited, is presumably due to ETB2 stimulation.  相似文献   

15.
Increasing evidence suggests a role for oxidative stress in age-related decrease in osteoblast number and function leading to the development of osteoporosis. This study was undertaken to investigate whether ghrelin, previously reported to stimulate osteoblast proliferation, counteracts tert-butyl hydroperoxide (t-BHP)-induced oxidative damage in MC3T3-E1 osteoblastic cells as well as to characterize the ghrelin receptor (GHS-R) involved in such activity. Pretreatment with ghrelin (10?7–10?11 M) significantly increased viability and reduced apoptosis of MC3T3-E1 cells cultured with t-BHP (250 μM) for three hours at the low concentration of 10?9 M as shown by MTT assay and Hoechst-33258 staining. Furthermore, ghrelin prevented t-BHP-induced osteoblastic dysfunction and changes in the cytoskeleton organization evidenced by the staining of the actin fibers with Phalloidin-FITC by reducing reactive oxygen species generation. The GHS-R type 1a agonist, EP1572 (10?7–10?11 M), had no effect against t-BHP-induced cytotoxicity and pretreatment with the selective GHS-R1a antagonist, d-Lys3-GHRP-6 (10?7 M), failed to remove ghrelin (10?9 M)-protective effects against oxidative injury, indicating that GHS-R1a is not involved in such ghrelin activity. Accordingly, unacylated ghrelin (DAG), not binding GHS-R1a, displays the same protective actions of ghrelin against t-BHP-induced cytotoxicity. Preliminary observations indicate that ghrelin increased the trimethylation of lys4 on histones H3, a known epigenetic mark activator, which may regulate the expression of some genes limiting oxidative damage. In conclusion, our data demonstrate that ghrelin and DAG promote survival of MC3T3-E1 cell exposed to t-BHP-induced oxidative damage. Such effect is independent of GHS-R1a and is likely mediated by a common ghrelin/DAG binding site.  相似文献   

16.
Ghrelin has been identified as the endogenous ligand for the GHS-R1α (growth hormone secretagogue receptor 1 alpha). Our previous experiments have indicated that ghrelin (i.c.v.) induces antinociceptive effects in acute pain in mice, and the effects were mediated through the central opioid receptors and GHS-R1α. However, which opioid receptor (OR) mediates the antinociceptive effects and the molecular mechanisms are also needed to be further explored. In the present study, the antinociceptive effects of ghrelin (i.c.v.) could be fully antagonized by δ-opioid receptor antagonist NTI. Furthermore, the mRNA and protein levels of δ-opioid peptide PENK and δ-opioid receptor OPRD were increased after i.c.v injection of ghrelin. Thus, it showed that the antinociception of ghrelin was correlated with the GHS-R1α and δ-opioid receptors. To explore which receptor was firstly activated by ghrelin, GHS-R1α antagonist [D-Lys3]-GHRP-6 was co-injection (i.c.v.) with deltorphin II (selective δ-opioid receptor agonist). Finally, the antinociception induced by deltorphin II wasn’t blocked by the co-injection (i.c.v.) of [D-Lys3]-GHRP-6, indicating that the GHS-R1α isn’t on the backward position of δ-opioid receptor. The results suggested that i.c.v. injection of ghrelin initially activated the GHS-R1α, which in turn increased the release of endogenous PENK to activation of OPRD to produce antinociception.  相似文献   

17.
The aim of this study was to investigate whether apamin-sensitive K(+)channels play a role in the NO induced relaxation of the human pregnant myometrium. Concentration-response curves for sodium nitroprusside (SNP) (10(-9)-10(-4)M) were constructed in the absence and presence of 10(-8)M apamin and 10(-7)M charybdotoxin (CTX). Preincubation with apamin resulted in a significant attenuation of the relaxation caused by SNP, while pre-treatment with CTX insignificantly decreased the SNP induced relaxation. Our findings suggest that apamin-sensitive K(+)channels exist in the human pregnant myometrium and play a role in modulation of the myometrium response to NO donors  相似文献   

18.
Adenosine: A partial agonist of the growth hormone secretagogue receptor   总被引:2,自引:0,他引:2  
The growth hormone secretagogue receptor (GHS-R) is involved in the regulation of pulsatile GH release. However, until recently, natural endogenous ligands for the receptor were unknown. We fractionated porcine hypothalamic extracts and assayed fractions for activity on HEK293 cells expressing GHS-R and aequorin. A partial agonist was isolated and identified using microspray tandem mass spectrometry as adenosine. GHS-R activation by adenosine and synthetic adenosine agonists is inhibited by the GHS-R selective antagonists L-765,867, D-Lys(3)-GHRP-6, and by theophylline and XAC. Cross desensitization of the GHS-R occurs with both MK-0677 and adenosine. Ligand binding and site directed mutagenesis studies show that adenosine binds to a binding site that is distinct from the previously characterized MK-0677 and GHRP-6 binding pocket. We propose, that adenosine is a physiologically important endogenous GHS-R ligand and speculate that GHS-R ligands modulate dopamine release from hypothalamic neurons.  相似文献   

19.
During fasting, gastrointestinal (GI) motility is characterized by cyclical motor contractions. These contractions have been referred to as interdigestive migrating contractions (IMCs). In dogs and humans, IMCs are known to be regulated by motilin. However, in rats and mice, IMCs are regulated by ghrelin. It is not clear how these peptides influence each other in vivo. The aim of the present study was to investigate the relationship between ghrelin and motilin in conscious dogs. Twenty healthy beagles were used in this study. Force transducers were implanted in the stomach, duodenum, and jejunum to monitor GI motility. Subsequent GI motility was recorded and quantified by calculating the motility index. In examination 1, blood samples were collected in the interdigestive state, and levels of plasma ghrelin and motilin were measured. Plasma motilin peaks were observed during every gastric phase III, and plasma ghrelin peaks occurred in nearly every early phase I. Plasma motilin and ghrelin levels increased and decreased cyclically with the interdigestive states. In examination 2, saline or canine ghrelin was administered intravenously during phase II and phase III. After injection of ghrelin, plasma motilin levels were measured. Ghrelin injection during phases II and III inhibited phase III contractions and decreased plasma motilin levels. In examination 3, ghrelin was infused in the presence of the growth hormone secretagogue receptors antagonist [D-Lys3]-GHRP-6. Continuous ghrelin infusion suppressed motilin release, an effect abrogated by the infusion of [D-Lys3]-GHRP-6. Examination 4 was performed to evaluate the plasma ghrelin response to motilin administration. Motilin infusion immediately decreased ghrelin levels. In this study, we demonstrated that motilin and ghrelin cooperatively control the function of gastric IMCs in conscious dogs. Our findings suggest that ghrelin regulates the function and release of motilin and that motilin may also regulate ghrelin.  相似文献   

20.

Background

Ischemic heart disease is a leading cause of mortality. To study this disease, ischemia/reperfusion (I/R) models are widely used to mimic the process of transient blockage and subsequent recovery of cardiac coronary blood supply. We aimed to determine whether the presence of the growth hormone secretagogues, ghrelin and hexarelin, would protect/improve the function of heart from I/R injury and to examine the underlying mechanisms.

Methodology/Principal Findings

Isolated hearts from adult male mice underwent 20 min global ischemia and 30 min reperfusion using a Langendorff apparatus. Ghrelin (10 nM) or hexarelin (1 nM) was introduced into the perfusion system either 10 min before or after ischemia, termed pre- and post-treatments. In freshly isolated cardiomyocytes from these hearts, single cell shortening, intracellular calcium ([Ca2+]i) transients and caffeine-releasable sarcoplasmic reticulum (SR) Ca2+ were measured. In addition, RT-PCR and Western blots were used to examine the expression level of GHS receptor type 1a (GHS-R1a), and phosphorylated phospholamban (p-PLB), respectively. Ghrelin and hexarelin pre- or post-treatments prevented the significant reduction in the cell shortening, [Ca2+]i transient amplitude and caffeine-releasable SR Ca2+ content after I/R through recovery of p-PLB. GHS-R1a antagonists, [D-Lys3]-GHRP-6 (200 nM) and BIM28163 (100 nM), completely blocked the effects of GHS on both cell shortening and [Ca2+]i transients.

Conclusion/Significance

Through activation of GHS-R1a, ghrelin and hexarelin produced a positive inotropic effect on ischemic cardiomyocytes and protected them from I/R injury probably by protecting or recovering p-PLB (and therefore SR Ca2+ content) to allow the maintenance or recovery of normal cardiac contractility. These observations provide supporting evidence for the potential therapeutic application of ghrelin and hexarelin in patients with cardiac I/R injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号