首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatitis A virus (HAV) contains a single-stranded, plus-sense RNA genome with a single long open reading frame encoding a polyprotein of approximately 250 kDa. Viral structural proteins are generated by posttranslational proteolytic processing of this polyprotein. We constructed recombinant vaccinia viruses which expressed the HAV polyprotein (rV-ORF) and the P1 structural region (rV-P1). rV-ORF-infected cell lysates demonstrated that the polyprotein was cleaved into immunoreactive 29- and 33-kDa proteins which comigrated with HAV capsid proteins VP0 and VP1. The rV-P1 construct produced a 90-kDa protein which showed no evidence of posttranslational processing. Solid-phase radioimmunoassays with human polyclonal anti-HAV sera and with murine or human neutralizing monoclonal anti-HAV antibodies recognized the rV-ORF-infected cell lysates. Sucrose density gradients of rV-ORF-infected cell lysates contained peaks of HAV antigen with sedimentation coefficients of approximately 70S and 15S, similar to those of HAV empty capsids and pentamers. Immune electron microscopy also demonstrated the presence of viruslike particles in rV-ORF-infected cell lysates. Thus, the HAV polyprotein expressed by a recombinant vaccinia virus demonstrated posttranslational processing into mature capsid proteins which assembled into antigenic viruslike particles.  相似文献   

2.
We examined the antigenic structure of human hepatitis A virus (HAV) by characterizing a series of 21 murine monoclonal-antibody-resistant neutralization escape mutants derived from the HM175 virus strain. The escape phenotype of each mutant was associated with reduced antibody binding in radioimmunofocus assays. Neutralization escape mutations were identified at the Asp-70 and Gln-74 residues of the capsid protein VP3, as well as at Ser-102, Val-171, Ala-176, and Lys-221 of VP1. With the exception of the Lys-221 mutants, substantial cross-resistance was evident among escape mutants tested against a panel of 22 neutralizing monoclonal antibodies, suggesting that the involved residues contribute to epitopes composing a single antigenic site. As mutations at one or more of these residues conferred resistance to 20 of 22 murine antibodies, this site appears to be immunodominant in the mouse. However, multiple mutants selected independently against any one monoclonal antibody had mutations at only one or, at the most, two amino acid residues within the capsid proteins, confirming that there are multiple epitopes within this antigenic site and suggesting that single-amino-acid residues contributing to these epitopes may play key roles in the binding of individual antibodies. A second, potentially independent antigenic site was identified by three escape mutants with different substitutions at Lys-221 of VP1. These mutants were resistant only to antibody H7C27, while H7C27 effectively neutralized all other escape mutants. These data support the existence of an immunodominant neutralization site in the antigenic structure of hepatitis A virus which involves residues of VP3 and VP1 and a second, potentially independent site involving residue 221 of VP1.  相似文献   

3.
Mimotopes mimic binding properties of natural antigen epitopes. They could be used for vaccine design, drugs development, and diagnostic assays. We have previously identified four bacteriophages displaying hepatitis A virus (HAV) mimotopes from a phage-display peptide library by affinity selection on serum antibodies from hepatitis A patients. Three of these HAV mimotopes showed similarity in their amino acid sequences with at least one of the VP3 and VP1 antigenic proteins of HAV and the four induced specific anti-HAV antibodies. In the present work, four conjugations were done. In each of them, a linear peptide (46, 53, 54 or 56) containing the amino-acid sequence of the corresponding mimotope was conjugated to keyhole limpet hemocyanin (KLH). Conjugation products were named: 46KLH, 53KLH, 54KLH and 56KLH. A two-arm multiple antigen peptide (MAP) system containing peptide sequence 46, and a second MAP containing two copies of peptide sequence 56 were synthesized and dimerized, to obtain the heterodimeric four-arms MAP (named MAP46-56) containing two copies of peptides 46 and 56. Mice were immunized with peptides conjugated to KLH and MAP46-56 to evaluate the ability of these two forms of mimotope presentation, to elicit antibodies that bind to the original antigen. KLH conjugated peptides rendered the highest levels of anti-peptide antibodies and were the only ones that induced specific anti-HAV antibodies. The results of immunizations showed that for the mimotopes chosen here, conjugation to a carrier protein was the most effective option to induce antibodies that cross-reacted with the natural antigen.  相似文献   

4.
Haro I  Pérez S  García M  Chan WC  Ercilla G 《FEBS letters》2003,540(1-3):133-140
Multiple antigen peptides (MAP) have been demonstrated to be efficient immunological reagents for the induction of immune responses to a variety of infectious agents. Several peptide domains of the hepatitis A virus (HAV) capsid proteins, mainly VP1 and VP3, are the immunodominant targets for a protective antibody response. In the present study we analyse the immunogenic properties of a tetrameric heterogeneous palmitoyl-derivatised MAP containing two defined HAV peptide sequences, VP1(11–25) and VP3(102–121), in rabbits immunised with either Freund’s adjuvant or multilamellar liposomes. The immune response was evaluated with a specific enzyme immunoassay using MAP[VP1+VP3], VP1 and VP3 as targets. The avidity of the immune response was measured by a non-competitive enzyme-linked immunosorbent assay and by the surface plasmon resonance technology. Antisera raised against the lipo-MAP peptide entrapped in liposomes demonstrated high avidity of binding with affinity rate constants approximately one order of magnitude greater than those obtained with the Freund’s protocol.  相似文献   

5.
Milligram amounts of highly purified hepatitis A virus (HAV) were obtained from persistently infected cell cultures. The HAV polypeptides were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to nitrocellulose for detection by an enzyme-linked immunotransfer blot procedure. The HAV nucleotide-derived amino acid sequence was subjected to computer analysis to identify potential immunogenic regions within the HAV capsid polypeptides. Synthetic peptides corresponding to selected regions of each of the larger putative capsid polypeptides were coupled to keyhole limpet hemocyanin and used to immunize rabbits. Four of six anti-HAV peptide sera were strongly reactive. Antipeptide serum generated against amino acids (a.a.) 75 through 82 reacted with the 27,000-molecular-weight (MW) polypeptide; serum against a.a. 279 through 285 reacted with the 29,000-MW HAV polypeptide; and sera against a.a. 591 through 602 and 606 through 618 reacted with the 33,000-MW HAV polypeptide. These reactions enabled the identification of the gene order of the larger HAV P1 region gene products. Our data indicate the following molecular weights: HAV VP2 or 1B, 27,000; HAV VP3 or 1C, 29,000; and HAV VP1 or 1D, 33,000.  相似文献   

6.
The genome of hepatitis A virus (HAV) was reverse transcribed into cDNA and molecularly cloned. cDNA clones coding for the capsid protein VP1 that carries the major HAV antigen were cloned into the expression vector pUR290 and expressed in Escherichia coli. The recombinant fusion protein reacted in an immunoblot with rabbit anti-HAV serum, suggesting that it possesses HAV antigenicity.  相似文献   

7.
The previously characterized monoclonal antibodies (MAbs) A1, A69, B1, and A20 are directed against assembled or nonassembled adeno-associated virus type 2 (AAV-2) capsid proteins (A. Wistuba, A. Kern, S. Weger, D. Grimm, and J. A. Kleinschmidt, J. Virol. 71:1341-1352, 1997). Here we describe the linear epitopes of A1, A69, and B1 which reside in VP1, VP2, and VP3, respectively, using gene fragment phage display library, peptide scan, and peptide competition experiments. In addition, MAbs A20, C24-B, C37-B, and D3 directed against conformational epitopes on AAV-2 capsids were characterized. Epitope sequences on the capsid surface were identified by enzyme-linked immunoabsorbent assay using AAV-2 mutants and AAV serotypes, peptide scan, and peptide competition experiments. A20 neutralizes infection following receptor attachment by binding an epitope formed during AAV-2 capsid assembly. The newly isolated antibodies C24-B and C37-B inhibit AAV-2 binding to cells, probably by recognizing a loop region involved in binding of AAV-2 to the cellular receptor. In contrast, binding of D3 to a loop near the predicted threefold spike does not neutralize AAV-2 infection. The identified antigenic regions on the AAV-2 capsid surface are discussed with respect to their possible roles in different steps of the viral life cycle.  相似文献   

8.
Analysis of neutralizing epitopes on foot-and-mouth disease virus.   总被引:7,自引:11,他引:7       下载免费PDF全文
For the investigation of the antigenic determinant structure of foot-and-mouth disease virus (FMDV), neutralizing monoclonal antibodies (MAbs) against complete virus were characterized by Western blot (immunoblot), enzyme immunoassay, and competition experiments with a synthetic peptide, isolated coat protein VP1, and viral particles as antigens. Two of the four MAbs reacted with each of these antigens, while the other two MAbs recognized only complete viral particles and reacted only very poorly with the peptide. The four MAbs showed different neutralization patterns with a panel of 11 different FMDV strains. cDNA-derived VP1 protein sequences of the different strains were compared to find correlations between the primary structure of the protein and the ability of virus to be neutralized. Based on this analysis, it appears that the first two MAbs recognized overlapping sequential epitopes in the known antigenic site represented by the peptide, whereas the two other MAbs recognized conformational epitopes. These conclusions were supported and extended by structural analyses of FMDV mutants resistant to neutralization by an MAb specific for a conformational epitope. These results demonstrate that no amino acid exchanges had occurred in the primary antigenic site of VP1 but instead in the other coat proteins VP2 and VP3, which by themselves do not induce neutralizing antibodies.  相似文献   

9.
本文用脊髓灰质炎病毒3个型6个强弱代表株壳蛋白一级结构,借助电子计算机预测和计算出病毒壳蛋白的二级结构和亲水概率。  相似文献   

10.
E A Brown  R W Jansen    S M Lemon 《Journal of virology》1989,63(11):4932-4937
PA21, a strain of hepatitis A virus (HAV) recovered from a naturally infected captive owl monkey, is indistinguishable from human HAV in polyclonal radioimmunoassays and cross-neutralization studies. However, cDNA-RNA hybridization has suggested a significant difference at the genomic level between PA21 and a reference human virus, HM175. Further characterization of this unique HAV was undertaken in an effort to determine the extent of genetic divergence from human HAV and its relation to the conserved antigenic structure of the virus. The close similarity between PA21 and HM175 antigens was confirmed with an extended panel of 18 neutralizing murine monoclonal antibodies: a reproducible difference in binding to the two viruses was detected with only one antibody (B5-B3). The nucleotide sequence of the P1 region of the PA21 genome had only 83.2% identity with HM175 virus, a difference approximately twice as great as that found between any two human strains. Most nucleotide changes were in third base positions, and the amino acid sequences of the capsid proteins were largely conserved. Amino acid replacements were clustered in the carboxy terminus of VP1 and the amino-terminal regions of VP2 and VP1. These data indicate that PA21 virus represents a unique genotype of HAV and suggest the existence of an ecologically isolated niche for HAV among feral owl monkeys.  相似文献   

11.
用重组痘苗病毒作载体表达甲型肝炎病毒抗原   总被引:8,自引:0,他引:8  
高峰  刘崇柏 《病毒学报》1989,5(4):303-311
  相似文献   

12.
Hepatitis A virus capsid proteins (VP0, VP3, and VP1) have been synthesized in Escherichia coli for use in antigenic and immunogenic analyses. Rabbits immunized with each of these individual recombinant capsid proteins developed a rapid neutralizing antibody response when subsequently challenged with a subimmunogenic dose of whole virus.  相似文献   

13.
Major neutralization antigenic sites have been previously mapped by us on VP1, the largest capsid protein of poliovirus type 1. Here we report the first identification of the primary sequence of a neutralization antigenic site on capsid protein VP2. Inspection of the amino acid sequence of VP2 led to the selection and synthesis of a peptide (n = 12) that, after linking to a carrier protein, induced an antiviral neutralizing antibody response in rabbits. The response was augmented by a single subsequent inoculation of intact virus; thus, the peptide was also capable of priming the production of neutralizing antibodies. These antibodies were directed only against the site specified by the synthetic peptide. Although the VP2-specific neutralization antigenic site appears not to be strongly immunogenic in the intact virion, it can nevertheless contribute to neutralization of poliovirus. This observation may be important for the development of peptide vaccines.  相似文献   

14.
Hepatitis A virus (HAV) has previously been reported to agglutinate human red blood cells at acidic pHs. Treatment of erythrocytes with different enzymes and chemical reagents indicated that HAV attachment is mediated through an interaction with sialylglycoproteins. HAV hemagglutination could be blocked by incubating the virus with glycophorin A, indicating that this sialylglycoprotein is the erythrocyte receptor. The number of receptors used was estimated to be around 500 per cell. At the same time, HAV-induced hemagglutination could also be blocked by either monoclonal antibody H7C27 or an anti-VP3(102-121) ascitic fluid, indicating that lysine 221 of VP1 and the surrounding VP3 residues lining the capsid pit are involved in HAV binding to erythrocytes.  相似文献   

15.
Grass carp (Ctenopharyngodon idella) is an important species of freshwater aquaculture fish in China. However, grass carp reovirus (GCRV) can cause fatal hemorrhagic disease in yearling populations. Until now, a strategy to define the antigenic capacity of the virus’s structural proteins for preparing an effective vaccine has not been available. In this study, some single-chain variable fragment antibodies (scFv), which could specifically recognize grass carp IgM, were selected from a constructed mouse naïve antibody phage display cDNA library. The identified scFv C1B3 clone was shown to possess relatively higher specific binding activity to grass carp IgM. Furthermore, ELISA analysis indicated that the IgM level in serum from virus-infected grass carp was more than two times higher than that of the control group at 5–7 days post infection. Moreover, Western blot analysis demonstrated that the outer capsid protein VP7 has a specific immuno-binding-reaction with the serum IgM from virus-infected grass carp. Our results suggest that VP7 can induce a stronger immune response in grass carp than the other GCRV structural proteins, which implies that VP7 protein could be used as a preferred immunogen for vaccine design.  相似文献   

16.
VP5, the outer capsid protein of bluetongue virus (BTV), plays an important role in viral penetration and antibody-mediated viral neutralization. Therefore, VP5 represents an important target for development of vaccines and diagnostic tests. In this study, we use bioinformatic tools to predict nine antigenic B cell epitopes in the VP5 protein of a BTV serotype 4 (BTV4) isolate from China. Further, we generate five BTV4 VP5-specific monoclonal antibodies (MAbs) and define their corresponding epitopes using a set of VP5-derived peptides expressed as maltose-binding protein (MBP) fusion proteins. The five identified epitopes map to amino acids 119–134, 257–272, 286–301, 322–337, and 481–496 of the VP5 protein. Importantly, the epitopes identified using VP5-derived peptides do not correlate with our bioinformatic prediction of antibody epitopes. Identification and characterization of BTV4 VP5 protein epitopes may aid the development of diagnostic tools and provide information with which to study the structure of the BTV VP5 protein.  相似文献   

17.
Severe structural constraints in the hepatitis A virus (HAV) capsid have been suggested as the reason for the lack of emergence of new serotypes in spite of the occurrence of complex distributions of mutants or quasispecies. Analysis of the HAV mutant spectra under immune pressure by the monoclonal antibodies (MAbs) K34C8 (immunodominant site) and H7C27 (glycophorin binding site) has revealed different evolutionary dynamics. Populations composed of complex ensembles of mutants with very low fitness or single dominant mutants with high fitness permit the acquisition of resistance to each of the MAbs, respectively. Deletion mutants were detected as components of the mutant spectra: up to 61 residues, with an average of 19, and up to 83 residues, with an average of 45, in VP3 and VP1 proteins, respectively. A clear negative selection of those replacements affecting the residues encoded by rare codons of the capsid surface has been detected through the present quasispecies analysis, confirming a certain beneficial role of such clusters. Since these clusters are located near or at the epitope regions, the need to maintain such clusters might prevent the emergence of new serotypes.  相似文献   

18.
An antigenic determinant common to the major capsid polypeptide (VP1) of simian virus 40 (SV40) and polyoma virus is described. Antisera prepared against intact viral particles reacted only with cells infected with the homologous virus by immunofluorescence tests (IF). However, antisera prepared against disrupted SV40 particles reacted in IF with both polyoma- and SV40-infected permissive cells. The cross-reaction with polyoma was localized to VP1 by the following evidence. (i) The IF cross-reaction was inhibited by preincubation of the antiserum with purified SV40 VP1; (ii) purified radiolabeled polyoma VP1 was precipitated by the cross-reactive serum, and this reaction was inhibited by unlabeled SV40 VP1; (iii) other antisera prepared against purified SV40 VP1 or polyoma VP1 reacted in IF with both SV40- and polyma-infected permissive cells. These cross-reacting antisera also reacted in IF with permissive cells infected with BK virus, rabbit kidney vacuolating virus, and the stumptailed macaque virus, suggesting that all members of the polyoma-SV40 subgroup share a common antigenic determinant located in their major capsid polypeptides.  相似文献   

19.
A series of four expression plasmids coding for fusion proteins containing foot-and-mouth disease virus (FMDV) sequences was constructed. The fusion proteins contain a large part of beta-galactosidase from Escherichia coli preceded (N-terminal) by 1, 2, 4 or 8 repeats of the antigenic determinant of FMDV consisting of amino acids 137-162 of the capsid polypeptide VP1. All four fusion proteins were efficiently produced in E. coli host bacteria. Immunization of rabbits resulted in FMDV-specific, neutralizing antibodies, the response being dependent on the number of repeats. With enzyme-linked immunosorbent-assay techniques it was shown that the FMDV antigenic determinants are exposed on the surface of the fusion proteins under non-denaturing conditions.  相似文献   

20.
Aleutian mink disease parvovirus (ADV) causes a persistent infection associated with circulating immune complexes, immune complex disease, hypergammaglobulinemia, and high levels of antiviral antibody. Although antibody can neutralize ADV infectivity in Crandell feline kidney cells in vitro, virus is not cleared in vivo, and capsid-based vaccines have proven uniformly ineffective. Antiviral antibody also enables ADV to infect macrophages, the target cells for persistent infection, by Fc-receptor-mediated antibody-dependent enhancement (ADE). The antibodies involved in these unique aspects of ADV pathogenesis may have specific targets on the ADV capsid. Prominent differences exist between the structure of ADV and other, more-typical parvoviruses, which can be accounted for by short peptide sequences in the flexible loop regions of the capsid proteins. In order to determine whether these short sequences are targets for antibodies involved in ADV pathogenesis, we studied heterologous antibodies against several peptides present in the major capsid protein, VP2. Of these antibodies, a polyclonal rabbit antibody to peptide VP2:428-446 was the most interesting. The anti-VP2:428-446 antibody aggregated virus particles into immune complexes, mediated ADE, and neutralized virus infectivity in vitro. Thus, antibody against this short peptide can be implicated in key facets of ADV pathogenesis. Structural modeling suggested that surface-exposed residues of VP2:428-446 are readily accessible for antibody binding. The observation that antibodies against a single target peptide in the ADV capsid can mediate both neutralization and ADE may explain the failure of capsid-based vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号