首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fission yeast stress-activated Sty1/Spc1 MAPK pathway responds to a similar range of stresses as do the mammalian p38 and SAPK/JNK MAPK pathways. In addition, sty1(-) cells are sterile and exhibit a G(2) cell cycle delay, indicating additional roles of Sty1 in meiosis and cell cycle progression. To identify novel proteins involved in stress responses, a microarray analysis of the Schizosaccharomyces pombe genome was performed to find genes that are up-regulated following exposure to stress in a Sty1-dependent manner. One such gene identified, srk1(+) (Sty1-regulated kinase 1), encodes a putative serine/threonine kinase homologous to mammalian calmodulin kinases. At the C terminus of Srk1 is a putative MAPK binding motif similar to that in the p38 substrates, MAPK-activated protein kinases 2 and 3. Indeed, we find that Srk1 is present in a complex with the Sty1 MAPK and is directly phosphorylated by Sty1. Furthermore, upon stress, Srk1 translocates from the cytoplasm to the nucleus in a process that is dependent on the Sty1 MAPK. Finally, we show that Srk1 has a role in regulating meiosis in fission yeast; following nitrogen limitation, srk1(-) cells enter meiosis significantly faster than wild-type cells and overexpression of srk1(+) inhibits the nitrogen starvation-induced arrest in G(1).  相似文献   

2.
The mechanisms by which environmental stress regulates cell cycle progression are poorly understood. In fission yeast, we show that Srk1 kinase, which associates with the stress-activated p38/Sty1 MAP kinase, regulates the onset of mitosis by inhibiting the Cdc25 phosphatase. Srk1 is periodically active in G2, and its overexpression causes cell cycle arrest in late G2 phase, whereas cells lacking srk1 enter mitosis prematurely. We find that Srk1 interacts with and phosphorylates Cdc25 at the same sites phosphorylated by the Chk1 and Cds1 (Chk2) kinases and that this phosphorylation is necessary for Srk1 to delay mitotic entry. Phosphorylation by Srk1 causes Cdc25 to bind to Rad24, a 14-3-3 protein family member, and accumulation of Cdc25 in the cytoplasm. However, Srk1 does not regulate Cdc25 in response to replication arrest or DNA damage but, rather, during a normal cell cycle and in response to nongenotoxic environmental stress.  相似文献   

3.
4.
The coupling of growth to cell cycle progression allows eukaryotic cells to divide at particular sizes depending on nutrient availability. In fission yeast, this coupling involves the Spc1/Sty1 mitogen-activated protein kinase (MAPK) pathway working through Polo kinase recruitment to the spindle pole bodies (SPBs). Here we report that changes in nutrients influence TOR signalling, which modulates Spc1/Sty1 activity. Rapamycin-induced inhibition of TOR signalling advanced mitotic onset, mimicking the reduction in cell size at division seen after shifts to poor nitrogen sources. Gcn2, an effector of TOR signalling and modulator of translation, regulates the Pyp2 phosphatase that in turn modulates Spc1/Sty1 activity. Rapamycin- or nutrient-induced stimulation of Spc1/Sty1 activity promotes Polo kinase SPB recruitment and Cdc2 activation to advance mitotic onset. This advanced mitotic onset is abolished in cells depleted of Gcn2, Pyp2, or Spc1/Sty1 or on blockage of Spc1/Sty1-dependent Polo SPB recruitment. Therefore, TOR signalling modulates mitotic onset through the stress MAPK pathway via the Pyp2 phosphatase.  相似文献   

5.
6.
7.
Eukaryotic cells utilize multiple mitogen-activated protein kinases (MAPKs) to transmit various extracellular stimuli to the nucleus. A subfamily of MAPKs that mediates environmental stress stimuli is also called stress-activated protein kinase (SAPK), which has crucial roles in cellular survival under stress conditions as well as inflammatory responses. Here we report that Cdc37, an evolutionarily conserved kinase-specific chaperone, is a positive regulator of Spc1 SAPK in the fission yeast Schizosaccharomyces pombe. Through a genetic screen, we have identified cdc37 as a mutation that compromises signaling through Spc1 SAPK. The Cdc37 protein physically interacts with Spc1, and the cdc37 mutation affects both the cellular level of the Spc1 protein and stress-induced Spc1 phosphorylation by Wis1 MAPK kinase (MAPKK). Consistently, expression of the stress response genes regulated by the Spc1 pathway is compromised in cdc37 mutant cells. On the other hand, a mutation in Hsp90, which often cooperates with Cdc37 in chaperoning protein kinases, does not affect Spc1 SAPK. These results suggest that Spc1 SAPK is a novel client protein for the Cdc37 chaperone, and the Cdc37 function is important to maintain the stability of the Spc1 protein and to facilitate stress signaling from Wis1 MAPKK to Spc1 SAPK.  相似文献   

8.
Oxidative stress-induced cell damage is an important component of many diseases and ageing. In eukaryotes, activation of JNK/p38 stress-activated protein kinase (SAPK) signaling pathways is critical for the cellular response to stress. 2-Cys peroxiredoxins (2-Cys Prx) are highly conserved, extremely abundant antioxidant enzymes that catalyze the breakdown of peroxides to protect cells from oxidative stress. Here we reveal that Tpx1, the single 2-Cys Prx in Schizosaccharomyces pombe, is required for the peroxide-induced activation of the p38/JNK homolog, Sty1. Tpx1 activates Sty1, downstream of previously identified redox sensors, by a mechanism that involves formation of a peroxide-induced disulphide complex between Tpx1 and Sty1. We have identified conserved cysteines in Tpx1 and Sty1 that are essential for normal peroxide-induced Tpx1-Sty1 disulphide formation and Tpx1-dependent regulation of peroxide-induced Sty1 activation. Thus we provide new insight into the response of SAPKs to diverse stimuli by revealing a mechanism for SAPK activation specifically by oxidative stress.  相似文献   

9.
TOR (target of rapamycin) signaling regulates cell growth and division in response to environmental stimuli such as the availability of nutrients and various forms of stress. The vegetative growth of fission yeast cells, unlike other eukaryotic cells, is not inhibited by treatment with rapamycin. We found that certain mutations including pmc1Δ (Ca2+-ATPase), cps9-193 (small GTPase, Ryh1) and cps1-12 (1,3-β-d-glucan synthase, Bgs1) confer a rapamycin-sensitive phenotype to cells under salt stress with potassium chloride (>0.5 M). Cytometric analysis revealed that the mutant cells were unable to enter the mitotic cell cycle when treated with the drug under salt stress. Gene cloning and overexpression experiments revealed that the sensitivity to rapamycin was suppressed by the ectopic expression of tyrosine phosphatases, Pyp1 and Pyp2, which are negative regulators of Spc1/Sty1 mitogen-activated protein kinase (MAPK). The level of tyrosine phosphorylation on Spc1 was higher and sustained substantially longer in these mutants than in the wild type under salt stress. The hyperphosphorylation was significantly suppressed by overexpression of pyp1 + with concomitant resumption of the mutant cells’ growth. In fission yeast, TOR signaling has been thought to stimulate the stress-response pathway, because mutations of TORC2 components such as Tor1, Sin1 and Ste20 result in similar sensitive phenotypes to environmental stress. The present study, however, strongly suggests that TOR signaling is required for the down-regulation of a hyperactivated Spc1 for reentry into the mitotic cell cycle. This finding may shed light on our understanding of a new stress-responsive mechanism in TOR signaling in higher organisms.  相似文献   

10.
Cmk2, a fission yeast Ser/Thr protein kinase homologous to mammalian calmodulin kinases, is essential for oxidative stress response. Cells lacking cmk2 gene were specifically sensitive to oxidative stress conditions. Upon stress, Cmk2 was phosphorylated in vivo, and this phosphorylation was dependent on the stress-activated MAPK Sty1/Spc1. Co-precipitation assays demonstrated that Cmk2 binds Sty1. Furthermore, in vivo or in vitro activated Sty1 was able to phosphorylate Cmk2, and the phosphorylation occurred at the C-terminal regulatory domain at Thr-411. Cell lethality caused by overexpression of Wis1 MAPK kinase was abolished by deletion of cmk2 or by mutation of Thr-411 of Cmk2. Taken together, our data suggest that Cmk2 acts downstream of Sty1 and is an essential kinase for oxidative stress responses.  相似文献   

11.
The fission yeast Sty1 mitogen-activated protein (MAP) kinase (MAPK) and its activator the Wis1 MAP kinase kinase (MAPKK) are required for cell cycle control, initiation of sexual differentiation, and protection against cellular stress. Like the mammalian JNK/SAPK and p38/CSBP1 MAPKs, Sty1 is activated by a range of environmental insults including osmotic stress, hydrogen peroxide, UV light, menadione, heat shock, and the protein synthesis inhibitor anisomycin. We have recently identified two upstream regulators of the Wis1 MAPKK, namely the Wak1 MAPKKK and the Mcs4 response regulator. Cells lacking Mcs4 or Wak1, however, are able to proliferate under stressful conditions and undergo sexual differentiation, suggesting that additional pathway(s) control the Wis1 MAPKK. We now show that this additional signal information is provided, at least in part, by the Win1 mitotic regulator. We show that Wak1 and Win1 coordinately control activation of Sty1 in response to multiple environmental stresses, but that Wak1 and Win1 perform distinct roles in the control of Sty1 under poor nutritional conditions. Our results suggest that the stress-activated Sty1 MAPK integrates information from multiple signaling pathways.  相似文献   

12.
13.
14.
15.
16.
17.
Spc1, an osmotic-stress-stimulated mitogen-activated protein kinase (MAPK) homolog in the fission yeast Schizosaccharomyces pombe, is required for the induction of mitosis and survival in high-osmolarity conditions. Spc1, also known as Sty1, is activated by Wis1 MAPK kinase and inhibited by Pyp1 tyrosine phosphatase. Spc1 is most closely related to Saccharomyces cerevisiae Hog1 and mammalian p38 kinases. Whereas Hog1 is specifically responsive to osmotic stress, we report here that Spc1 is activated by multiple forms of stress, including high temperature and oxidative stress. In this regard Spc1 is more similar to mammalian p38. Activation of Spc1 is crucial for survival of various forms of stress. Spc1 regulates expression of genes encoding stress-related proteins such as glycerol-3-phosphate dehydrogenase (gpd1+) and trehalose-6-phosphate synthase (tps1+). Spc1 also promotes expression of pyp2+, which encodes a tyrosine phosphatase postulated as a negative regulator of Spc1. This proposal is supported by the finding that Spc1 associates with Pyp2 in vivo and that the amount of Spc1 tyrosine phosphorylation is lower in a Pyp2-overproducing strain than in the wild type. Moreover, the level of stress-stimulated gpd1+ expression is higher in delta pyp2 mutants than in the wild type. These findings demonstrate that Spc1 promotes expression of genes involved in stress survival and that of regulation may be commonly employed to modulate MAPK signal transduction pathways in eukaryotic species.  相似文献   

18.
19.
20.
Spc1 in Schizosaccharomyces pombe is a member of the stress-activated protein kinase family, an evolutionary conserved subfamily of mitogen-activated protein kinases (MAPKs). Spc1 is activated by a MAPK kinase homologue, Wis1, and negatively regulated by Pyp1 and Pyp2 tyrosine phosphatases. Mutations in the spc1+ and wis1+ genes cause a G2 cell cycle delay that is exacerbated during stress. Herein, we describe two upstream regulators of the Wis1-Spc1 cascade. wik1+ (Wis1 kinase) was identified from its homology to budding yeast SSK2, which encodes a MAPKK kinase that regulates the HOG1 osmosensing pathway. Delta wik1 cells are impaired in stress-induced activation of Spc1 and show a G2 cell cycle delay and osmosensitive growth. Moreover, overproduction of a constitutively active form of Wik1 induces hyperactivation of Spc1 in wis1(+)-dependent manner, suggesting that Wik1 regulates Spc1 through activation of Wis1. A mutation of mcs4+ (mitotic catastrophe suppressor) was originally isolated as a suppressor of the mitotic catastrophe phenotype of a cdc2-3w wee1-50 double mutant. We have found that mcs4- cells are defective at activation of Spc1 in response to various forms of stress. Epistasis analysis has placed Mcs4-upstream of Wik1 in the Spc1 activation cascade. These results indicate that Mcs4 is part of a sensor system for multiple environmental signals that modulates the timing of entry into mitosis by regulating the Wik1-Wis1-Spc1 kinase cascade. Inactivation of the sensor system delays the onset of mitosis and rescues lethal premature mitosis in cdc2-3w wee1-50 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号