首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the last few years, three laboratories have reported three entirely different crystallographic models for the L photointermediate of bacteriorhodopsin. All are from X-ray diffraction of illuminated crystals that contain L in photostationary states created at similar cryogenic temperatures. This article compares the models and their implications, the crystallographic statistics and the methods used to derive them, as well as their agreement with non-crystallographic information.  相似文献   

2.
X-ray and electron diffraction studies of specific reaction intermediates, or reaction intermediate analogues, have produced a consistent picture of the structural mechanism of light-driven proton pumping by bacteriorhodopsin. Of central importance within this picture is the structure of the L-intermediate, which follows the retinal all-trans to 13-cis photoisomerization step of the K-intermediate and sets the stage for the primary proton transfer event from the positively charged Schiff base to the negatively charged Asp-85. Here we report the structural changes in bacteriorhodopsin following red light illumination at 150 K. Single crystal microspectrophotometry showed that only the L-intermediate is populated in three-dimensional crystals under these conditions. The experimental difference Fourier electron density map and refined crystallographic structure were consistent with those previously presented (Royant, A., Edman, K., Ursby, T., Pebay-Peyroula, E., Landau, E. M., and Neutze, R. (2000) Nature 406, 645-648; Royant, A., Edman, K., Ursby, T., Pebay-Peyroula, E., Landau, E. M., and Neutze, R. (2001) Photochem. Photobiol. 74, 794-804). Based on the refined crystallographic structures, molecular dynamic simulations were used to examine the influence of the conformational change of the protein that is associated with the K-to-L transition on retinal dynamics. Implications regarding the structural mechanism for proton pumping by bacteriorhodopsin are discussed.  相似文献   

3.
Michel H 《The EMBO journal》1982,1(10):1267-1271
The three-dimensional crystals of the integral membrane protein bacteriorhodopsin have been characterized by X-ray diffraction and freeze-fracture electron microscopy: the needle-like form A crystals belong to space group P 1 (pseudohexagonal) with seven molecules per crystallographic unit cell forming one turn of a non-crystallographic helix. The probable arrangement of the bacteriorhodopsin molecules is derived from freeze-fracture electron micrographs and chromophore orientation. Membrane-like structures are not present. The same helices of bacteriorhodopsin molecules found in crystal form A also make up the cube-like crystal form B. They are now arranged in all three mutually perpendicular directions. These cubes are always highly disordered, since the unit cell length corresponds to 6.7 molecules of the 7-fold helix. Very often, conversion of bacteriorhodopsin from the three-dimensional crystals into filamentous material occurs.  相似文献   

4.
The goal of time-resolved crystallographic experiments is to capture dynamic "snapshots" of molecules at different stages of a reaction pathway. In recent work, we have developed approaches to determine determined light-induced conformational changes in the proton pump bacteriorhodopsin by electron crystallographic analysis of two-dimensional protein crystals. For this purpose, crystals of bacteriorhodopsin were deposited on an electron microscopic grid and were plunge-frozen in liquid ethane at a variety of times after illumination. Electron diffraction patterns were recorded either from unilluminated crystals or from crystals frozen as early as 1 ms after illumination and used to construct projection difference Fourier maps at 3.5-A resolution to define light-driven changes in protein conformation. As demonstrated here, the data are of a sufficiently high quality that structure factors obtained from a single electron diffraction pattern of a plunge-frozen bacteriorhodopsin crystal are adequate to obtain an interpretable difference Fourier map. These difference maps report on the nature and extent of light-induced conformational changes in the photocycle and have provided incisive tools for understanding the molecular mechanism of proton transport by bacteriorhodopsin.  相似文献   

5.
Cell culture methods and models are key investigative tools for cell and molecular biology studies. Fetal bovine serum (FBS) is commonly used as an additive during cell culture since its constituents promote cell survival, proliferation and differentiation. Here we report that commercially available FBS from different major suppliers consistently contain precipitated, calcium oxalate crystals-either in the monohydrate (COM) or dihydrate (COD) form. Mineral structure and phase identification of the crystals were determined by X-ray diffraction, chemical composition by energy-dispersive X-ray microanalysis, and imaging and measurement of crystal growth steps by atomic force microscopy-all identified and confirmed crystallographic parameters for COM and COD. Proteins binding to the crystals were identified by immunoblotting, revealing the presence of osteopontin and fetuin-A (alpha(2)HS-glycoprotein)--known regulators of crystal growth found in serum. Macrophage cell cultures exposed to calcium oxalate crystals showed internalization of the crystals by phagocytosis in a process that induced disruption of cell-cell adhesion, release of reactive oxygen species and membrane damage, events that may be linked to the release of inflammatory cytokines by these cells into the culture media. In conclusion, calcium oxalate crystals found in commercially available FBS are toxic to cells, and their presence may confound results from in vitro studies where, amongst others, phagocytosis, biomineralization, renal cell and molecular biology, and drug and biomaterial testing are being examined.  相似文献   

6.
The L to M reaction of the bacteriorhodopsin photocycle includes the crucial proton transfer from the retinal Schiff base to Asp85. In spite of the importance of the L state in deciding central issues of the transport mechanism in this pump, the serious disagreements among the three published crystallographic structures of L have remained unresolved. Here, we report on the X-ray diffraction structure of the L state, to 1.53-1.73 A resolutions, from replicate data sets collected from six independent crystals. Unlike earlier studies, the partial occupancy refinement uses diffraction intensities from the same crystals before and after the illumination to produce the trapped L state. The high reproducibility of inter-atomic distances, and bond angles and torsions of the retinal, lends credibility to the structural model. The photoisomerized 13-cis retinal in L is twisted at the C(13)=C(14) and C(15)=NZ double-bonds, and the Schiff base does not lose its connection to Wat402 and, therefore, to the proton acceptor Asp85. The protonation of Asp85 by the Schiff base in the L-->M reaction is likely to occur, therefore, via Wat402. It is evident from the structure of the L state that various conformational changes involving hydrogen-bonding residues and bound water molecules begin to propagate from the retinal to the protein at this stage already, and in both extracellular and cytoplasmic directions. Their rationales in the transport can be deduced from the way their amplitudes increase in the intermediates that follow L in the reaction cycle, and from the proton transfer reactions with which they are associated.  相似文献   

7.
A new large-scale purification method for benzoylformate decarboxylase from Pseudomonas putida has allowed us to undertake an X-ray crystallographic study of the enzyme. The previously observed instability of the enzyme was overcome by addition of 100 microM thiamine pyrophosphate to buffers used in the purification. The final enzyme preparation was more than 97% pure, as determined by denaturing gel electrophoresis and densitometry. The mobility of the enzyme on a gel filtration column indicates that it is a tetramer of 57-kDa subunits. Large, single crystals of benzoylformate decarboxylase were grown from solutions of buffered polyethylene glycol 400, pH 8.5. The crystals diffract to beyond 1.6 A resolution and are stable for days to X-ray radiation. Analysis of X-ray data from the crystals, along with the newly determined quaternary structure, identifies the space group as I222. The unit cell dimensions are a = 82 A, b = 97 A, c = 138 A. An average Vm value for the crystals is consistent with one subunit per asymmetric unit. The subunits of the tetramer must be arranged with tetrahedral 222 symmetry.  相似文献   

8.
Structural organization of gap junction channels   总被引:10,自引:0,他引:10  
Gap junctions were initially described morphologically, and identified as semi-crystalline arrays of channels linking two cells. This suggested that they may represent an amenable target for electron and X-ray crystallographic studies in much the same way that bacteriorhodopsin has. Over 30 years later, however, an atomic resolution structural solution of these unique intercellular pores is still lacking due to many challenges faced in obtaining high expression levels and purification of these structures. A variety of microscopic techniques, as well as NMR structure determination of fragments of the protein, have now provided clearer and correlated views of how these structures are assembled and function as intercellular conduits. As a complement to these structural approaches, a variety of mutagenic studies linking structure and function have now allowed molecular details to be superimposed on these lower resolution structures, so that a clearer image of pore architecture and its modes of regulation are beginning to emerge.  相似文献   

9.
Absorption, fluorescence and excitation spectra of three-dimensional bacteriorhodopsin crystals harvested from a lipidic cubic phase are presented. The combination of the spectroscopic experiments performed at room temperature, controlled pH and full external hydration reveals the presence of three distinct protein species. Besides the well-known form observed in purple membrane, we find two other species with a relative contribution of up to 30%. As the spectra are similar to those of dehydrated or deionized membranes containing bacteriorhodopsin, we suggest that amino acid residues, located in the vicinity of the retinal chromophore, have changed their protonation state. We propose partial dehydration during crystallization and/or room temperature conditions as the main source of this heterogeneity. This assignment is supported by an experiment showing interconversion of the species upon intentional dehydration and by crystallographic data, which have indicated an in-plane unit cell in 3D crystals comparable to that of dehydrated bacteriorhodopsin membranes. Full hydration of the proteins after the water-withdrawing crystallization process is hampered. We suggest that this hindered water diffusion originates mainly from a closure of hydrophobic crystal surfaces by lipid bilayers. The present spectroscopic work complements the crystallographic data, due to its ability to determine quantitatively compositional heterogeneity resulting from proteins in different protonation states.  相似文献   

10.
Gap junctions were initially described morphologically, and identified as semi-crystalline arrays of channels linking two cells. This suggested that they may represent an amenable target for electron and X-ray crystallographic studies in much the same way that bacteriorhodopsin has. Over 30 years later, however, an atomic resolution structural solution of these unique intercellular pores is still lacking due to many challenges faced in obtaining high expression levels and purification of these structures. A variety of microscopic techniques, as well as NMR structure determination of fragments of the protein, have now provided clearer and correlated views of how these structures are assembled and function as intercellular conduits. As a complement to these structural approaches, a variety of mutagenic studies linking structure and function have now allowed molecular details to be superimposed on these lower resolution structures, so that a clearer image of pore architecture and its modes of regulation are beginning to emerge.  相似文献   

11.
We report a comprehensive electron crystallographic analysis of conformational changes in the photocycle of wild-type bacteriorhodopsin and in a variety of mutant proteins with kinetic defects in the photocycle. Specific intermediates that accumulate in the late stages of the photocycle of wild-type bacteriorhodopsin, the single mutants D38R, D96N, D96G, T46V, L93A and F219L, and the triple mutant D96G/F171C/F219L were trapped by freezing two-dimensional crystals in liquid ethane at varying times after illumination with a light flash. Electron diffraction patterns recorded from these crystals were used to construct projection difference Fourier maps at 3.5 A resolution to define light-driven changes in protein conformation.Our experiments demonstrate that in wild-type bacteriorhodopsin, a large protein conformational change occurs within approximately 1 ms after illumination. Analysis of structural changes in wild-type and mutant bacteriorhodopsins under conditions when either the M or the N intermediate is preferentially accumulated reveals that there are only small differences in structure between M and N intermediates trapped in the same protein. However, a considerably larger variation is observed when the same optical intermediate is trapped in different mutants. In some of the mutants, a partial conformational change is present even prior to illumination, with additional changes occurring upon illumination. Selected mutations, such as those in the D96G/F171C/F219L triple mutant, can sufficiently destabilize the wild-type structure to generate almost the full extent of the conformational change in the dark, with minimal additional light-induced changes. We conclude that the differences in structural changes observed in mutants that display long-lived M, N or O intermediates are best described as variations of one fundamental type of conformational change, rather than representing structural changes that are unique to the optical intermediate that is accumulated. Our observations thus support a simplified view of the photocycle of wild-type bacteriorhodopsin in which the structures of the initial state and the early intermediates (K, L and M1) are well approximated by one protein conformation, while the structures of the later intermediates (M2, N and O) are well approximated by the other protein conformation. We propose that in wild-type bacteriorhodopsin and in most mutants, this conformational change between the M1 and M2 states is likely to make an important contribution towards efficiently switching proton accessibility of the Schiff base from the extracellular side to the cytoplasmic side of the membrane.  相似文献   

12.
To increase the efficiency of diffraction data collection for protein crystallographic studies, an automated system designed to store frozen protein crystals, mount them sequentially, align them to the X-ray beam, collect complete data sets, and return the crystals to storage has been developed. Advances in X-ray data collection technology including more brilliant X-ray sources, improved focusing optics, and faster-readout detectors have reduced diffraction data acquisition times from days to hours at a typical protein crystallography laboratory [1,2]. In addition, the number of high-brilliance synchrotron X-ray beam lines dedicated to macromolecular crystallography has increased significantly, and data collection times at these facilities can be routinely less than an hour per crystal. Because the number of protein crystals that may be collected in a 24 hr period has substantially increased, unattended X-ray data acquisition, including automated crystal mounting and alignment, is a desirable goal for protein crystallography. The ability to complete X-ray data collection more efficiently should impact a number of fields, including the emerging structural genomics field [3], structure-directed drug design, and the newly developed screening by X-ray crystallography [4], as well as small molecule applications.  相似文献   

13.
Crystals of glutathione-S-transferase (GST)-fused protein containing the DNA-binding domain of DNA replication-related element-binding factor, DREF, were obtained under crystallization conditions similar to those for GST. Preliminary X-ray crystallographic analysis revealed that crystals of the GST-fused protein belong to space group P6(1)22 or P6(5)22 with unit cell dimensions a = b = 140.4 A, c = 93.5 A and gamma = 120 degrees, having one molecule in the crystallographic asymmetric unit. The crystals diffract to 2.5 A resolution. The cell dimensions are related to those of GST crystals thus far reported. Crystallization of the DNA-binding domain that was cleaved from the fused protein by thrombin was also carried out using several methods under numerous conditions, but efforts to produce well-ordered large crystals were unsuccessful. A possible application of GST-fusion proteins for small target proteins or domains to obtain crystals suitable for X-ray structure determination is proposed.  相似文献   

14.
High-resolution structures of macromolecular assemblies are pivotal for our understanding of their biological functions in fundamental cellular processes. In the field of X-ray crystallography, recent methodological and instrumental advances have led to the structure determinations of macromolecular assemblies of increased size and complexity, such as those of ribosomal complexes, RNA polymerases, and large multifunctional enzymes. These advances include the use of robotic screening techniques that maximize the chances of obtaining well-diffracting crystals of large complexes through the fine sampling of crystallization space. Sophisticated crystal optimization and cryoprotection techniques and the use of highly brilliant X-ray beams from third-generation synchrotron light sources now allow data collection from weakly diffracting crystals with large asymmetric units. Combined approaches are used to derive phase information, including phases calculated from electron microscopy (EM) models, heavy atom clusters, and density modification protocols. New crystallographic software tools prove valuable for structure determination and model refinement of large macromolecular complexes.  相似文献   

15.
A comprehensive understanding of structure-function relationships of proteins requires their structures to be elucidated to high resolution. With most membrane proteins this has not been accomplished so far, mainly because of their notoriously poor crystallizability. Here we present a completely detergent-free procedure for the incorporation of a native purple membrane into a monoolein-based lipidic cubic phase, and subsequent crystallization of three-dimensional bacteriorhodopsin crystals therein. These crystals exhibit comparable X-ray diffraction quality and mosaicity, and identical crystal habit and space group to those of bacteriorhodopsin crystals that are grown from detergent-solubilized protein in cubic phase.  相似文献   

16.
Red blood cells of yellow-spotted river turtles (Podocnemis unifilis, Pleurodira, Chelonia, REPTILIA) have two hemoglobin (Hb) components, Hb A and Hb D. We purified the hemoglobin component homologous to amniote (reptiles, birds, and mammals) adult Hb A which comprises two identical α(A) -globin polypeptides and two identical β-globin polypeptides. To establish the crystal structure of Podocnemis Hb A, we first determined the globin primary structures using cDNA nucleotide sequencing with the assistance of protein sequencing. The purified Podocnemis Hb A produced a different form of crystal for each of the two different buffer systems used: form A, tetragonal crystals (space group, P4?2?2), produced under neutral pH (pH 7-8) conditions; and form B, hexagonal crystals (space group, P6?22), produced under high alkaline pH (pH 11-13) conditions. Single crystals of the two forms were examined by Raman microscopy with an excitation of 532 nm, indicating their structural differences. The crystal structures of the two forms were constructed by X-ray crystallographic diffraction at a resolution of 2.20 ? for form A and 2.35 ? for form B. The differences of the tertiary and quaternary structures of the two forms were marginal; however, one clear difference was found in helix structure. When comparing Podocnemis Hb A with Hb A from specimens in other taxa, such as Anser indicus (birds) and Homo sapiens (mammals) by SHELXPRO, the root mean square deviation (RMSD) between the corresponding Cα atoms of the two globins does not exceed 2.0 ?. These low values indicate the crystal structures resemble each other. Our data on X-ray crystal structures and Raman spectra not only reveal the first findings on the two crystal forms of Podocnemis unifilis Hb A but also provide the first refined models for reptilian adult Hb A.  相似文献   

17.
Photosynthetic water oxidation and O? formation are catalyzed by a Mn?Ca complex bound to the proteins of photosystem II (PSII). The catalytic site, including the inorganic Mn?CaO(n)H(x) core and its protein environment, is denoted as oxygen-evolving complex (OEC). Earlier and recent progress in the endeavor to elucidate the structure of the OEC is reviewed, with focus on recent results obtained by (i) X?ray spectroscopy (specifically by EXAFS analyses), and (ii) X-ray diffraction (XRD, protein crystallography). Very recently, an impressive resolution of 1.9? has been achieved by XRD. Most likely however, all XRD data on the Mn?CaO(n)H(x) core of the OEC are affected by X-ray induced modifications (radiation damage). Therefore and to address (important) details of the geometric and electronic structure of the OEC, a combined analysis of XRD and XAS data has been approached by several research groups. These efforts are reviewed and extended using an especially comprehensive approach. Taking into account XRD results on the protein environment of the inorganic core of the Mn complex, 12 alternative OEC models are considered and evaluated by quantitative comparison to (i) extended-range EXAFS data, (ii) polarized EXAFS of partially oriented PSII membrane particles, and (iii) polarized EXAFS of PSII crystals. We conclude that there is a class of OEC models that is in good agreement with both the recent crystallographic models and the XAS data. On these grounds, mechanistic implications for the O?O bond formation chemistry are discussed. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

18.
Th?e atomic structure of the light-driven ion pump bacteriorhodopsin and the surrounding lipid matrix was determined by X-ray diffraction of crystals grown in cubic lipid phase. In the extracellular region, an extensive three-dimensional hydrogen-bonded network of protein residues and seven water molecules leads from the buried retinal Schiff base and the proton acceptor Asp85 to the membrane surface. Near Lys216 where the retinal binds, transmembrane helix G contains a pi-bulge that causes a non-proline? kink. The bulge is stabilized by hydrogen-bonding of the main-chain carbonyl groups of Ala215 and Lys216 with two buried water molecules located between the Schiff base and the proton donor Asp96 in the cytoplasmic region. The results indicate extensive involvement of bound water molecules in both the structure and the function of this seven-helical membrane protein. A bilayer of 18 tightly bound lipid chains forms an annulus around the protein in the crystal. Contacts between the trimers in the membrane plane are mediated almost exclusively by lipids.  相似文献   

19.
Bromoperoxidase from Streptomyces aureofaciens ATCC 10762, a non-haem haloperoxidase, has been crystallized using the hanging drop method. Preliminary X-ray diffraction studies show that the crystals belong to the cubic space group P2(1)3 with a = 123.4 A. The asymmetric unit contains a dimer of Mr = 60,200. The crystals diffract to at least 2.3 A resolution and are suitable for crystallographic structure analysis.  相似文献   

20.
The majority of 3D structures of macromolecules are currently determined by macromolecular crystallography, which employs the diffraction of X-rays on single crystals. However, during diffraction experiments, the X-rays can damage the protein crystals by ionization processes, especially when powerful X-ray sources at synchrotron facilities are used. This process of radiation damage generates photo-electrons that can get trapped in protein moieties. The 3D structure derived from such experiments can differ remarkably from the structure of the native molecule. Recently, the crystal structures of different oxidation states of horseradish peroxidase and nickel-containing superoxide dismutase were determined using crystallographic redox titration performed during the exposure of the crystals to the incident X-ray beam. Previous crystallographic analyses have not shown the distinct structures of the active sites associated with the redox state of the structural features of these enzymes. These new studies show that, for protein moieties that are susceptible to radiation damage and prone to reduction by photo-electrons, care is required in both the design of the diffraction experiment and the analysis and interpretation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号