首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The kinetics of cycling of the transferrin receptor in A431 human epidermoid-carcinoma cells was examined in the presence or absence of bound diferric transferrin. In order to investigate the properties of the receptor in the absence of transferrin, the cells were maintained in defined medium without transferrin. It was demonstrated that Fab fragments of a monoclonal anti-(transferrin receptor) antibody (OKT9) did not alter the binding of diferric 125I-transferrin to the receptor or change the accumulation of [59Fe]diferric transferrin by cells. OKT9 125I-Fab fragments were prepared and used as a probe for the function of the receptor. The first-order rate constants for endocytosis (0.16 +/- 0.02 min-1) and exocytosis (0.056 +/- 0.003 min-1) were found to be significantly lower for control cells than the corresponding rate constants for endocytosis (0.22 +/- 0.02 min-1) and exocytosis (0.065 +/- 0.004 min-1) measured for cells incubated with 1 microM-diferric transferrin (mean +/- S.D., n = 3). The cycling of the transferrin receptor is therefore regulated by diferric transferrin via an increase in both the rate of endocytosis and exocytosis. Examination of the accumulation of OKT9 125I-Fab fragments indicated that diferric transferrin caused a marked decrease in the amount of internalized 125I-Fab fragments associated with the cells after 60 min of incubation at 37 degrees C. Diferric transferrin therefore increases the efficiency of the release of internalized 125I-Fab fragments compared with cells incubated without diferric transferrin. These data indicate that transferrin regulates the sorting of the transferrin receptor at the cell surface and within endosomal membrane compartments.  相似文献   

2.
E Alvarez  N Gironès    R J Davis 《The EMBO journal》1989,8(8):2231-2240
The human transferrin receptor is expressed as a disulfide-linked dimer at the cell surface. The sites of intermolecular disulfide bonds are Cys-89 and Cys-98. We have examined the functional significance of the covalent dimeric structure of the transferrin receptor by substitution of Cys-89 and Cys-98 with serine residues. Wild-type and mutated transferrin receptors were expressed in Chinese hamster ovary cells (clone TF-) that lack detectable endogenous transferrin receptors. The rates of receptor endocytosis and recycling were measured and the accumulation of iron by cells incubated with [59Fe]diferric transferrin was investigated. No significant differences between these rates were observed when cells expressing wild-type and mutated receptors were compared. The structure of the mutant receptor lacking intermolecular disulfide bonds was investigated. The presence of a population of mutant receptors with a non-covalent dimeric structure was indicated by cross-linking studies using diferric [125I]transferrin and the bifunctional reagent disuccinimidyl suberimidate. However, sucrose density gradient sedimentation analysis of Triton X-100 solubilized transferrin receptors demonstrated that the mutant receptor existed as a monomer in the absence of diferric transferrin and as an apparent dimer in the presence of this receptor ligand. We conclude that the covalent dimeric structure of the transferrin receptor is not required for the expression of the dimeric state and functional activity of the receptor.  相似文献   

3.
Acquisition of iron from transferrin regulates reticulocyte heme synthesis   总被引:6,自引:0,他引:6  
Fe-salicylaldehyde isonicotinoylhydrazone (SIH), which can donate iron to reticulocytes without transferrin as a mediator, has been utilized to test the hypothesis that the rate of iron uptake from transferrin limits the rate of heme synthesis in erythroid cells. Reticulocytes take up 59Fe from [59Fe]SIH and incorporate it into heme to a much greater extent than from saturating concentrations of [59Fe]transferrin. Also, Fe-SIH stimulates [2-14C]glycine into heme when compared to the incorporation observed with saturating levels of Fe-transferrin. In addition, delta-aminolevulinic acid does not stimulate 59Fe incorporation into heme from either [59Fe]transferrin or [59Fe]SIH but does reverse the inhibition of 59Fe incorporation into heme caused by isoniazid, an inhibitor of delta-aminolevulinic acid synthase. Taken together, these results suggest the hypothesis that some step(s) in the pathway of iron from extracellular transferrin to intracellular protoporphyrin limits the overall rate of heme synthesis in reticulocytes.  相似文献   

4.
Human diferric transferrin was partially labeled with 59Fe at low or neutral pH (chemically labeled) and by replacement of diferric iron previously donated to rabbit reticulocytes (biologically labeled). Reticulocyte 59Fe uptake experiments with chemically labeled preparations indicated that iron bound at near neutral pH was more readily incorporated by reticulocytes than iron bound at low pH. The pH-dependent iron dissociation studies of biologically labeled transferrin solutions indicated that Fe3+, bound at the site from which the metal was initially utilized by the cells, dissociated between pH 5.8 and 7.4. In contrast, lower pH (5.2--5.8) was required to effect dissociation of iron that has remained bound to the protein after incubation with reticulocytes. These findings suggest that each human transferrin iron-binding site has different acid-base iron-binding properties which could be related to the observed heterogenic rabbit reticulocyte iron-donating properties of human transferrin and identifies that the near neutral iron-binding site initially surrenders its iron to these cells.  相似文献   

5.
Addition of platelet-derived growth factor (PDGF), recombinant insulin-like growth factor I (rIGF-I) or epidermal growth factor (EGF) to BALB/c 3T3 fibroblasts causes a marked increase in the binding of [125I]diferric transferrin to cell surface receptors. This effect is very rapid and is complete within 5 min. The effect of EGF is transient, with [125I]diferric transferrin binding returning to control values within 25 min. In contrast, PDGF and rIGF-I cause a prolonged stimulation of [125I]diferric transferrin binding that could be observed for up to 2 h. The increase in the binding of [125I]diferric transferrin caused by growth factors was investigated by analysis of the binding isotherm. Epidermal growth factor, PDGF and rIGF-I were found to increase the cell surface expression of transferrin receptors rather than to alter the affinity of the transferrin receptors. This result was confirmed in human fibroblasts by the demonstration that EGF, PDGF and rIGF-I could stimulate the binding of a monoclonal antibody directed against the transferrin receptor (OKT9) to the cell surface. Furthermore, PDGF and rIGF-I stimulated the sustained uptake of [59Fe]diferric transferrin by BALB/c 3T3 fibroblasts, while EGF transiently increased uptake. Thus the effect of these growth factors to increase the cell surface expression of the transferrin receptor appears to have an important physiological consequence.  相似文献   

6.
Promyelocytic leukemia HL-60 cells can be induced to differentiate to granulocytes, under the conditions of cultures in the presence of dimethyl sulfoxide (DMSO). Examination of the binding of 125I-labeled hemopexin to DMSO-induced HL-60 cells showed that the density of hemopexin receptors on the induced-cells was 1.35 times that on the uninduced cells. We proposed that a specific receptor for hemopexin was present on the plasma membranes of polymorphonuclear leukocytes (PMNs). The binding of human [125I]hemopexin to human PMNs at 4 degrees C was saturable with time and with increasing concentrations of [125I]hemopexin. Scatchard analysis of the binding revealed the presence of approximately 5.7 x 10(4) binding sites per cell with an apparent dissociation constant (Kd) of 2.3 x 10(-9) M. [125I]Hemopexin was rapidly bound then dissociated from the cells after the release of heme, when the cells were incubated with radioactive hemopexin at 37 degrees C. Incubation of the cells with the [59Fe]heme-hemopexin complex resulted in an accumulation of [59Fe]heme in the cells, with a temperature of 37 degrees C but not that of 4 degrees C. Ouabain or NaF inhibited not only the binding of [125I]hemopexin to PMNs but also the uptake of [59Fe]heme from [59Fe]heme hemopexin by the cells. Neither NH4 Cl nor chloroquine inhibited the uptake. Detergent extracts of 125I-labeled PMNs were incubated with a hemopexin-coupled Sepharose CL-6B. A polypeptide reacting with hemopexin-Sepharose was estimated to have a molecular weight of 80,000, as determined by polyacrylamide gel electrophoresis, in the presence of sodium dodecylsulfate. We propose that PMNs take up heme from hemopexin, as mediated by the 80,000 dalton receptor for hemopexin.  相似文献   

7.
59Fe uptake by rabbit reticulocytes from human transferrin-bound iron was studied by using transferrin solutions (35, 50, 65, 80 and 100% saturated with iron) whose only common characteristic was their content of diferric transferrin. During the early incubation period, 59Fe uptake from each preparation by reticulocytes was identical despite wide variations in amounts of total transferrin, total iron, monoferric transferrin and apotransferrin in solution. During the later phase of incubation, rate of uptake declined and was proportional to each solution's monoferric transferrin content. Uptake was also studied in a comparative experiment which used two identical, partially saturated transferrin preparations, one uniformly 59Fe-labelled and the other tracer-labelled with [59Fe]diferric transferrin. In both experiments, iron uptake by reticulocytes corresponded to utilization of a ferric ion from diferric transferrin before utilization of iron from monoferric transferrin.  相似文献   

8.
Human diferric transferrin was partially labeled with 59Fe at low or neutral pH (chemically labeled) and by replacement of diferric iron previously donated to rabbit reticulocytes (biologically labeled). Reticulocyte 59 uptake experiments with chemically labeled preparations indicated that iron bound at near neutral ph was more readily incorporated by reticulocytes than iron bound at low pH. The pH-dependent iron dissociation studies of biologically labeled transferrin solutions indicated that Fe3+, bound at the site from which the metal was initially utilized by the cells, dissociated between pH 5.8 and 7.4. In contrast, lower pH (5.2–5.8) was required to effect dissociation of iron that had remained bound to the protein after incubation with reticulocytes. These findings suggest that each human transferrin iron-binding site has different acid-base iron-binding properties which could be related to the observed heterogenic rabbit reticulocyte iron-binding properties of human transferrin and identifies that the near neutral iron-donating site initially surrenders its iron to these cells.  相似文献   

9.
P K Bali  O Zak  P Aisen 《Biochemistry》1991,30(2):324-328
Iron removal by pyrophosphate from human serum diferric transferrin and the complex of transferrin with its receptor was studied in 0.05 M HEPES or MES buffers containing 0.1 M NaCl and 0.01 M CHAPS at 25 degrees C at pH 7.4, 6.4, and 5.6. At each pH, the concentration of pyrophosphate was adjusted to achieve rates of release amenable to study over a reasonable time course. Released iron was separated from protein-bound iron by poly(ethylene glycol) precipitation of aliquots drawn from the reaction mixture at various times during the course of a kinetic run. The amount of 59Fe label associated with the protein and pyrophosphate was determined from the radioactivity of precipitate and supernatant, respectively, in each aliquot. Iron removal of 0.05 M pyrophosphate at pH 7.4 from diferric transferrin bound to the receptor is considerably slower than that from free diferric transferrin, with observed pseudo-first-order rate constants of 0.020 and 0.191 min-1, respectively. For iron removal by 0.01 M pyrophosphate at pH 6.4, corresponding rate constants are 0.031 and 0.644 min-1. However, at pH 5.6, iron removal by 0.001 M pyrophosphate is faster from diferric transferrin bound to its receptor than from free transferrin (observed rate constants of 0.819 and 0.160 min-1, respectively). Thus, the transferrin receptor not only facilitates the removal of iron from diferric transferrin at the low pH that prevails in endocytic vesicles but may also reduce its accessibility to iron acceptors at extracellular pH, thereby minimizing the likelihood of nonspecific release of iron from transferrin at the cell surface.  相似文献   

10.
The rate of receptor-mediated endocytosis of diferric 125I-transferrin by Chinese-hamster ovary cells expressing human transferrin receptors was compared with the rate measured for cells expressing hamster transferrin receptors. It was observed that the rate of endocytosis of the human transferrin receptor was significantly higher than that for the hamster receptor. In order to examine the molecular basis for the difference between the observed rates of endocytosis, a cDNA clone corresponding to the cytoplasmic domain of the hamster receptor was isolated. The predicted primary sequence of the cytoplasmic domain of the hamster transferrin receptor is identical with that of the human receptor, except at position 20, where a tyrosine residue in the human sequence is replaced with a cysteine residue. To test the hypothesis that this structural change in the receptor is related to the difference in the rate of internalization, we used site-directed mutagenesis to examine the effect of the replacement of tyrosine-20 with a cysteine residue in the human transferrin receptor. It was observed that the substitution of tyrosine-20 with cysteine caused a 60% inhibition of the rate of iron accumulation by cells incubated with [59Fe]diferric transferrin. No significant difference between the rate of internalization of the mutant (cysteine-20) human receptor and the hamster receptor was observed. Thus the substitution of tyrosine-20 with a cysteine residue can account for the difference between the rate of endocytosis of the human and hamster transferrin receptors.  相似文献   

11.
The coordination of transferrin receptor (TfR) expression and heme synthesis was investigated in mouse erythroleukemia (MEL) cells of line 707 treated with heme synthesis inhibitors or in a variant line Fw genetically deficient in heme synthesis. Cells of line 707 were induced for differentiation by 5 mM hexamethylene bisacetamide (HMBA). TfR expression increased in the course of induction, as judged by increased TfR mRNA synthesis, increased cytoplasmic TfR mRNA level, and by the increased number of cellular 125I-Tf binding sites. Addition of 0.1 mM succinylacetone (SA) decreased cellular TfR to the level comparable with the uninduced cells. The decrease was reverted by the iron chelator desferrioxamine (DFO) but not by exogenous hemin. In short-term (1-2 hours) incubation, SA inhibited 59Fe incorporation from transferrin into heme, whereas total cellular 59Fe uptake was increased. A decrease in TfR mRNA synthesis was apparent after 2 hours of SA treatment. Conversely, glutathione peroxidase mRNA synthesis, previously shown to be inducible by iron, was increased by SA treatment. Cells of heme deficient line Fw did not increase the number of Tf binding sites after the induction of differentiation by 5 mM sodium butyrate. SA had no effect on TfR expression in Fw cells. The results suggest that the depletion of cellular non-heme iron due to the increase in heme synthesis maintains a high level of transferrin receptor expression in differentiating erythroid cells even after the cessation of cell division.  相似文献   

12.
Four aspects of iron metabolism were studied in cultured Friend erythroleukemia cells before and after induction of erythroid differentiation by dimethyl sulfoxide. (1) The binding of 125I-labeled transferrin was determined over a range of transferrin concentrations from 0.5 to 15 μM. Scatchard analysis of the binding curves demonstrated equivalent numbers of transferrin binding sites per cell: 7.78 ± 2.41 · 105 in non-induced cells and 9.28 ± 1.57 · 105 after 4 days of exposure to dimethyl sulfoxide. (2) The rate of iron transport was determined by measuring iron uptake from 59Fe-labeled transferrin. Iron uptake in non-induced cells was approx. 17 000 molecules of iron/cell per min; 24 h after addition of dimethyl sulfoxide it increased to 38 000, and it rose to maximal levels of approx. 130 000 at 72 h. (3) Heme synthesis, assayed qualitatively by benzidine staining and measured quantitatively by incorporation of 59Fe or [2-14C]glycine into cyclohexanone-extracted or crystallized heme, was not detected until 3 days after addition of dimethyl sulfoxide, when 12% of the cells were stained by benzidine and 6 pmol 59Fe and 32 pmol [2-14C]glycine were incorporated into heme per 108 cells/h. After 4 days, 60% of the cells were benzidine positive and 34 pmol 59Fe and 90 pmol [2-14C]glycine were incorporated into heme per 108 cells/h. (4) The rate of incorporation of 59Fe into ferritin, measured by immunoprecipitation of ferritin by specific antimouse ferritin immunoglobulin G, rose from 4.4 ± 0.6 cells to 18.4 ± 1.3 pmol 59Fe/h per 108 cells 3 days after addition of dimethyl sulfoxide, and then fell to 11.6 ± 3.1 pmol 4 days after dimethyl sulfoxide when heme synthesis was maximal. These studies indicate that one or more steps in cellular iron transport distal to transferrin binding is induced early by dimethyl sulfoxide and that ferritin may play an active role in iron delivery for heme synthesis.  相似文献   

13.
Heme formation in reticulocytes from rabbits and rodents is subject to end product negative feedback regulation: intracellular "free" heme has been shown to control acquisition of transferrin iron for heme synthesis. To identify the site of control of heme biosynthesis in the human erythron, immature erythroid cells were obtained from peripheral blood and aspirated bone marrow. After incubation with human 59Fe transferrin, 2-[14C]glycine, or 4-[14C]delta-aminolevulinate, isotopic incorporation into extracted heme was determined. Addition of cycloheximide to increase endogenous free heme, reduced incorporation of labeled glycine and iron but not delta-aminolevulinate into cell heme. Incorporation of glycine and iron was also sensitive to inhibition by exogenous hematin (Ki, 30 and 45 microM, respectively) i.e. at concentrations in the range which affect cell-free protein synthesis in reticulocyte lysates. Hematin treatment rapidly diminished incorporation of intracellular 59Fe into heme by human erythroid cells but assimilation of 4-[14C]delta-aminolevulinate into heme was insensitive to inhibition by hematin (Ki greater than 100 microM). In human reticulocytes (unlike those from rabbits), addition of ferric salicylaldehyde isonicotinoylhydrazone, to increase the pre-heme iron pool independently of the transferrin cycle, failed to promote heme synthesis or modify feedback inhibition induced by hematin. In human erythroid cells (but not rabbit reticulocytes) pre-incubation with unlabeled delta-aminolevulinate or protoporphyrin IX greatly stimulated utilization of cell 59Fe for heme synthesis and also attenuated end product inhibition. In human erythroid cells heme biosynthesis is thus primarily regulated by feedback inhibition at one or more steps which lead to delta-aminolevulinate formation. Hence in man the regulatory process affects generation of the first committed precursor of porphyrin biosynthesis by delta-aminolevulinate synthetase, whereas in the rabbit separate regulatory mechanisms exist which control the incorporation of iron into protoporphyrin IX.  相似文献   

14.
The human transferrin receptor is post-translationally modified by the covalent attachment of palmitic acid to Cys62 and Cys67 via a thio-ester bond. To investigate the role of the acylation of the transferrin receptor, Cys62 and Cys67 were substituted with serine and alanine residues. The properties of the mutant receptors were compared with wild-type receptors after expression in Chinese hamster ovary cells that lack endogenous transferrin receptors. Rapid incorporation of [3H]palmitate into the wild-type transferrin receptor was observed, but the mutant receptors were found to be palmitoylation-defective. The kinetics of endocytosis and recycling of the wild-type and mutant receptors were compared. It was observed that the rate of endocytosis of the palmitoylation-defective transferrin receptors was significantly greater than the rate measured for the wild-type transferrin receptor. In contrast, the mutation of Cys62 and Cys67 was found to have no significant effect on the rate of transferrin receptor recycling. Consistent with these observations, it was found that cells expressing palmitoylation-defective transferrin receptors exhibited an increased rate of accumulation of [59Fe]diferric transferrin. Together, these data indicate that the palmitoylation of the transferrin receptor is associated with an inhibition of the rate of transferrin receptor endocytosis. Addition of insulin to cultured cells causes an increase in the palmitoylation of cell surface transferrin receptors and a decrease in the rate of transferrin receptor internalization. It was observed that the effect of insulin to inhibit the endocytosis of the acylation-defective [Ala62 Ala67]transferrin receptor was attenuated in comparison with the wild-type receptor. The decreased effectiveness of insulin to inhibit the internalization of the acylation-defective transferrin receptor is consistent with the hypothesis that palmitoylation represents a potential mechanism for the regulation of transferrin receptor endocytosis.  相似文献   

15.
Methods were developed for obtaining highly viable mouse hepatocytes in single cell suspension and for maintaining the hepatocytes in adherent static culture. The characteristics of transferrin binding and iron uptake into these hepatocytes was investigated. (1) After attachment to culture dishes for 18–24 h hepatocytes displayed an accelerating rate of iron uptake with time. Immediately after isolation mouse hepatocytes in suspension exhibited a linear iron uptake rate of 1.14·105molecules/cell per min in 5 μM transferrin. Iron uptake also increased with increasing transferrin concentration both in suspension and adherent culture. Pinocytosis measured in isolated hepatocytes could account only for 10–20% of the total iron uptake. Iron uptake was completely inhibited at 4°C. (2) A transferrin binding component which saturated at 0.5 μM diferric transferrin was detected. The number of specific, saturable diferric transferrin binding sites on mouse hepatocytes was 4.4·104±1.9·104 for cells in suspension and 6.6·104±2.3·104 for adherent cultured cells. The apparent association constants were 1.23·107 1·mol?1 and 3.4·106 1·mol?1 for suspension and cultured cells respectively. (3) Mouse hepatocytes also displayed a large component of non-saturable transferrin binding sites. This binding increased linearly with transferrin concentration and appeared to contribute to iron uptake in mouse hepatocytes. Assuming that only saturable transferrin binding sites donate iron, the rate of iron uptake is about 2.5 molecules iron/receptor per min at 5 μM transferrin in both suspension and adherent cells and increases to 4 molecules iron/receptor per min at 10 μM transferrin in adherent cultured cells. These rates are considerably greater than the 0.5 molcules/receptor per min observed at 0.5 μM transferrin, the concentration at which the specific transferrin binding sites are fully occupied. The data suggest that either the non-saturable binding component donates some iron or that this component stimulates the saturable component to increase the rate of iron uptake. (4) During incubations at 4°C the majority of the transferrin bound to both saturable and nonsaturable binding sites lost one or more iron atoms. Incubations including 2 mM α,α′-dipyridyl (an Fe11 chelator) decreased the cell associated 59Fe at both 4 and 37°C while completely inhibiting iron uptake within 2–3 min of exposure at 37°C. These observations suggest that most if not all iron is loosened from transferrin upon interaction of transferrin with the hepatocyte membrane. There is also greater sensitivity of 59Fe uptake compared to transferrin binding to pronase digestion, suggesting that an iron acceptor moiety on the cell surface is available to proteolysis.  相似文献   

16.
We have examined whether reticulocytes depleted of transferrin might incorporate 59Fe from 59Fe-labelled pyridoxan isonicotinoyl hydrazone (PIH). Transferrin-depleted reticulocytes showed a time-, temperature- and concentration-dependent incorporation of 59Fe when incubated with 20–200 μM 59Fe-PIH. The amount of 59Fe incorporated with 200 μM 59Fe-PIH is equal to or higher than that taken up from transferrin at 20 μM 59Fe concentration. After 60 min about 60% of the 59Fe taken up by the cells is recovered in heme while the remainder is probably still bound to PIH. 1 mM succinyl acetone (a specific inhibitor of heme synthesis) inhibits PIH-mediated incorporation of 59Fe into heme by about 79% indicating that 59Fe from 59Fe-PIH is incorporated into de novo synthesized protoporphyrin. As is the case with transferrin, erythrocytes do not incorporate 59Fe from 59Fe-PIH. Pretreatment of reticulocytes with pronase does not inhibit their ability to incorporate 59Fe from 59Fe-PIH, suggesting that, unlike the uptake of Fe from transferrin, membrane receptors are not involved in the uptake of Fe-PIH by the cells.  相似文献   

17.
To investigate the regulation mechanism of the uptake of iron and heme iron by the cells and intracellular utilization of iron, we examined the interaction between iron uptake from transferrin and hemopexin-mediated uptake of heme by human leukemic U937 cells or HeLa cells. U937 cells exhibited about 40,000 hemopexin receptors/cell with a dissociation constant (Kd) of 1 nM. Heme bound in hemopexin was taken up by U937 cells or HeLa cells in a receptor-mediated manner. Treatment of both species of cells with hemopexin led to a rapid decrease in iron uptake from transferrin in a hemopexin dose-dependent manner, and the decrease seen in case of treatment with hemin was less than that seen with hemopexin. The decrease of iron uptake by hemopexin contributed to a decrease in cell surface transferrin receptors on hemopexin-treated cells. Immunoblot analysis of the transferrin receptors revealed that the cellular level of receptors in U937 cells did not vary during an 8-h incubation with hemopexin although the number of surface receptors as well as iron uptake decreased within the 2-h incubation. After 4 h of incubation of the cells with hemopexin, a decrease of the synthesis of the receptors occurred. Thus, the down-regulation of transferrin receptors by hemopexin can be attributed to at least two mechanisms. One is a rapid redistribution of the surface receptor into the interior of the cells, and the other is a decrease in the biosynthesis of the receptor. 59Fe from the internalized heme rapidly appeared in non-heme iron (ferritin) coincidently with the induction of heme oxygenase. The results suggest that iron released from heme down-regulates the expression of the transferrin receptors and iron uptake.  相似文献   

18.
A variant of human transferrin with abnormal properties.   总被引:5,自引:0,他引:5       下载免费PDF全文
Normal human skin fibroblasts cultured in vitro exhibit specific binding sites for 125I-labelled transferrin. Kinetic studies revealed a rate constant for association (Kon) at 37 degrees C of 1.03 X 10(7) M-1 X min-1. The rate constant for dissociation (Koff) at 37 degrees C was 7.9 X 10(-2) X min-1. The dissociation constant (KD) was 5.1 X 10(-9) M as determined by Scatchard analysis of binding and analysis of rate constants. Fibroblasts were capable of binding 3.9 X 10(5) molecules of transferrin per cell. Binding of 125I-labelled diferric transferrin to cells was inhibited equally by either apo-transferrin or diferric transferrin, but no inhibition was evident with apo-lactoferrin, iron-saturated lactoferrin, or albumin. Preincubation of cells with saturating levels of diferric transferrin or apo-transferrin produced no significant change in receptor number or affinity. Preincubation of cells with ferric ammonium citrate caused a time- and dose-dependent decrease in transferrin binding. After preincubation with ferric ammonium citrate for 72 h, diferric transferrin binding was 37.7% of control, but no change in receptor affinity was apparent by Scatchard analysis. These results suggest that fibroblast transferrin receptor number is modulated by intracellular iron content and not by ligand-receptor binding.  相似文献   

19.
Placental binding and uptake of diferric transferrin as well as transplacental iron transfer has been studied in isolated, perfused guinea pig placenta. The process of binding and uptake of transferrin was saturable only on the maternal side. On the fetal side no specific binding occurred. This indicates an asymmetric distribution of transferrin receptors. No receptors are present for albumin, neither on maternal, nor fetal side. Most of the 125I-59Fe transferrin, administered with a single bolus, enters the trophoblast. A small part remains attached to the plasma membranes, as shown by cell fractionation and in transferrin exchange experiments. The majority transferrin, which was internalized, is unlikely to be bound to plasma membranes and may be bound to receptors dissociated from plasma membranes. Based on kinetics of 59Fe appearance and washout at the fetal side of the perfused placenta as a model for trans-placental iron transfer has been postulated. A central feature is the role played by a small compartment (0.14 mumol) to which iron is supplied by a very rapid process at the trophoblast receptor, without internalisation of transferrin. A second un-identified pathway is supposed to regulate the magnitude of the iron transfer pool.  相似文献   

20.
Structure of the human transferrin receptor-transferrin complex   总被引:9,自引:0,他引:9  
Cheng Y  Zak O  Aisen P  Harrison SC  Walz T 《Cell》2004,116(4):565-576
Iron, insoluble as free Fe(3+) and toxic as free Fe(2+), is distributed through the body as Fe(3+) bound to transferrin (Tf) for delivery to cells by endocytosis of its complex with transferrin receptor (TfR). Although much is understood of the transferrin endocytotic cycle, little has been uncovered of the molecular details underlying the formation of the receptor-transferrin complex. Using cryo-electron microscopy, we have produced a density map of the TfR-Tf complex at subnanometer resolution. An atomic model, obtained by fitting crystal structures of diferric Tf and the receptor ectodomain into the map, shows that the Tf N-lobe is sandwiched between the membrane and the TfR ectodomain and that the C-lobe abuts the receptor helical domain. When Tf binds receptor, its N-lobe moves by about 9 A with respect to its C-lobe. The structure of TfR-Tf complex helps account for known differences in the iron-release properties of free and receptor bound Tf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号