首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The immigrans species group in the Drosophilinae is one of the representative species groups of Drosophila in East Asia. Although this group constitutes a significant part of the drosophilid fauna in the Old World, only a few species have been analyzed in previous molecular phylogenetic studies. To study the phylogeny of the immigrans group, we analyzed the nucleotide sequences of two nuclear genes, alcohol dehydrogenase (Adh) and glycerol-3-phosphate dehydrogenase (Gpdh), for 36 drosophilid species, including 12 species of the immigrans group. In the resultant phylogenetic trees, 10 species of the immigrans group (D. immigrans, D. formosana, D. ruberrima, D. albomicans, D. nasuta, D. neonasuta, D. pallidifrons, D. hypocausta, D. neohypocausta, D. siamana) consistently formed a clade (the immigrans group proper), although the phylogeny within this clade did not exactly correspond to the classification of species subgroups. However, D. annulipes and D. quadrilineata, both of which belong to the quadrilineata subgroup of the immigrans group, were not included in the immigrans group proper. Furthermore, we obtained the unexpected result that D. annulipes was included in a clade comprising Scaptomyza and Hawaiian Drosophila, together with D. maculinotata of the funebris group, although the phylogenetic relationships within this clade remain uncertain and need to be substantiated with further studies. Thus, according to the present study, the immigrans group is polyphyletic.  相似文献   

2.
Ethanol at low concentration increases larval viability in D. funebris and D. melanogaster and decreases it in D. immigrans. Isopropanol decreases viability in all three species. Isopropanol depresses alcohol dehydrogenase activity. This is accompanied by a change in the relative proportion of electrophoretic forms of the enzyme. Acetone appears in the medium when larvae of D. funebris and D. immigrans develop in the presence of isopropanol. It can be transformed again into isopropanol on reaching a threshold value. It seems that this transformation cannot be carried out by alcohol dehydrogenase alone.  相似文献   

3.
The biochemical properties of the enzyme alcohol dehydrogenase of two different Drosophila species, Drosophila simulans and Drosophila virilis, were studied and compared with those of Drosophila melanogaster Adhs enzyme. All of them consist of two identical subunits of molecular weight 27800 and share significant similarities in function. The substrate specificities of these enzymes were characterized and Km(app.) and Vmax.(app.) values were calculated. All these alcohol dehydrogenases show greater affinity for secondary rather than for primary alcohols. The amino acid compositions of the three enzymes were determined, and there is a close similarity between the D. simulans and the D. melanogaster enzymes, but there are significant differences from the alcohol dehydrogenase of D. virilis. The N-terminal amino acid is blocked and the C-terminal amino acid is the same for all three alcohol dehydrogenases. The enzymes from the three species were carboxymethylated and digested with trypsin. The peptide 'maps' reveal, as expected, more homologies between the enzymes of D. simulans and D. melanogaster than with the enzyme of D. virilis.  相似文献   

4.
5.
The nucleotide sequences of the Adh and Adhr genes of Drosophila kuntzei were derived from combined overlapping sequences of clones isolated from a genomic library and from cloned PCR and inverse-PCR fragments. Only a proximal promoter was detected upstream of the Adh gene, indicating that D. kuntzei Adh is regulated by a one-promoter system. Further upstream of the Adh structural gene, an adult enhancer region (AAE) was found that contains most of the regulatory sequences described for AAEs of other Drosophila species. Analysis of the ADH protein showed an amino acid change from valine to threonine in the active site at position 189 which is also found in D. funebris but is otherwise unique among DROSOPHILA: This difference alone may be responsible for the very low ADH activity found in this species and may cause a difference in substrate usage pattern. Codon bias in Adh and Adhr was comparable and found to be very low compared with other species. Phylogenetic analysis showed that D. kuntzei is closest related to D. funebris and D. immigrans. The time of divergence between D. kuntzei and D. funebris was estimated to be 14.2-20.2 Myr and that between D. kuntzei-D. funebris and D. immigrans to be 30.8-44.0 Myr. An analysis of the genetic variation in the Adh gene and upstream sequences of four European strains showed that this gene was highly variable. Overall nucleotide diversity (pi) was 0.0139, which is two times higher than that in D. melanogaster.  相似文献   

6.
Insect alcohol dehydrogenase is highly different from the well-known yeast and mammalian alcohol dehydrogenases. The enzyme from Drosophila lebanonensis has now been characterized by protein analysis and was found to have a 254-residue protein chain with an acetyl-blocked N-terminal Met. Comparisons with the structures of the enzyme from other species allows judgement of the extent of variability within the insect alcohol dehydrogenases. They have diverged to a considerable extent; two forms analyzed at the protein level differ at 18% of all residues, and all the known Drosophila alcohol dehydrogenase structures reveal differences at 72 positions. Some deviations, against a background similarity, in the extent of changes are noted among the parts corresponding to different exons. The structural variation within Drosophila is about as large as the one for the mammalian zinc-containing alcohol dehydrogenase. Consequently, the results illustrate Drosophila relationships and establish great variations also for group of alcohol dehydrogenases lacking zinc.  相似文献   

7.
Alcohol dehydrogenase (ADH) has been purified from Drosophila hydei. Biochemical investigations show that the native enzyme is a dimer consisting of two identical subunits with molecular weight 27,000. The pH optimum values of pure enzyme preparations are 7.9 and 9.4. The pI values are 8.83 and 8.41. Substrate specificities have been characterized. Km(app) values are lowest for propan-2-ol and butan-2-ol and Vmax(app) values are highest for these two substrates. The amino acid composition has been determined. Peptide mapping experiments performed after trypsin digestion of the enzyme allow the identification of 24 peptides. Peptides comprising 64% of the amino acid residues have also been purified by high-performance liquid chromatography (HPLC), and their N-terminal residues and amino acid composition determined. Results are compared with the amino acid sequence of ADH from D. melanogaster Adhs [Thatcher, D. R. (1980). Biochem. J. 187:875]. When data on the biochemical and structural characterization of ADH from D. hydei are compared with data from other species of Drosophila, clear homologies are observed.  相似文献   

8.
The enzyme alcohol dehydrogenase (ADH) fromseveral naturally occurring ADH variants ofDrosophila melanogaster and Drosophilasimulans was isolated. Affinity chromatography withthe ligand Cibacron Blue and elution with NAD+ showed similarbehavior for D. melanogaster ADH-FF, ADH-71k,and D. simulans ADH. Introduction of a secondCibacron Blue affinity chromatography step, withgradient elution with NAD+, resulted in pure and stable enzymes. D.melanogaster ADH-SS cannot be eluted from theaffinity chromatography column at a high concentrationof NAD+ and required a pH gradient for itspurification, preceded by a wash step with a high concentration ofNAD+. Hybrid Drosophila melanogasteralcohol dehydrogenase FS has been isolated fromheterozygous flies, using affinity chromatography withfirst elution at a high concentration NAD+, directlyfollowed by affinity chromatography elution with a pHgradient. Incubation of equal amounts of pure homodimersof Drosophila melanogaster ADH-FF and ADH-SS,in the presence of 3 M urea at pH 8.6, for 30 min at roomtemperature, followed by reassociation yielded activeDrosophila melanogaster ADH-FS heterodimers. Noproteolytic degradation was found after incubation ofpurified enzyme preparations in the absence or presenceof SDS, except for some degradation of ADH-SS after verylong incubation times. The thermostabilities of D.melanogaster ADH-71k and ADH-SS were almostidentical and were higher than those of D.melanogaster ADH-FF and D. simulans ADH. Thethermostability of D. melanogaster ADH-FS waslower than those of D. melanogaster ADH-FF andADH-SS. D. melanogaster ADH-FF and ADH-71k have identical inhibition constantswith the ligand Cibacron Blue at pH 8.6, which are twotimes higher at pH 9.5. The Ki values forD. simulans ADH are three times lower at bothpH values. D. melanogaster ADH-SS and ADH-FS havesimilar Ki values, which are lower than thosefor D. melanogaster ADH-FF at pH 8.6. But at pH9.5 the Ki value for ADH-FS is the same as atpH 8.6, while that of ADH-SS is seven times higher. Kinetic parameters ofDrosophila melanogaster ADH-FF, ADH-SS, andADH-71k and Drosophila simulans ADH, at pH 8.6and 9.5, showed little or no variation inKm eth values. TheKm NAD values measured at pH 9.5for Drosophila alcohol dehydrogenases are alllower than those measured at pH 8.6. The rate constants(kcat) determined for all fourDrosophila alcohol dehydrogenases are higher at pH 9.5 than at pH 8.6. D.melanogaster ADH-FS showed nonlinear kinetics.  相似文献   

9.
Different metal binding inhibitors of horse liver alcohol dehydrogenase, similarly affect the Drosophila melanogaster AdhS and AdhUF alleloenzymes. However, binding is generally weaker and the experiments show that the alleloenzymes although not zinc metalloenzymes, behave to the metal binding reagents very much as if they were. The metal-directed, affinity-labelling, imidazole derivative BrImPpOH reversibly inhibits, but does not inactivate the alleolenzymes. This confirms there is no active site metal atom with cysteine as a metal ligand, as found in zinc alcohol dehydrogenases. Pyrazole is a strong ethanol-competitive inhibitor of AdhS and AdhUF alleloenzymes. Formation of the ternary enzyme-NAD-pyrazole complex gives an absorption increase between 295-330 nm. This enables an active site titration to be performed and the determination of epsilon (305 nm) of 15.8 . 10(3) M-1 . cm-1. Inhibition experiments with imidazole confirm that with secondary alcohols such as propan-2-ol, a Theorell-Chance mechanism predominates, but with ethanol and primary alcohols, interconversion of the ternary complexes is rate limiting. Salicylate is a coenzyme competitive inhibitor and KEI suggests that the coenzyme adenosine binding region is similar is Drosophila and horse liver alcohol dehydrogenase. Drosophila alcohol dehydrogenase is found not to form a ternary complex with NADH and isobutyramide. In this and other properties it is like carboxymethyl liver alcohol dehydrogenase. Both Drosophila and carboxymethyl alcohol dehydrogenase bind coenzyme in a similar manner to native horse liver alcohol dehydrogenase, but substrate binding differs between each. Inhibition by Cibacrone blue, indicates that amino acid 192 which is lysine in AdhS and threonine in AdhUF, is located in the coenzyme-binding region. Proteolytic activity present in preparations of alcohol dehydrogenase from D. melanogaster, is considered due to a metalloprotease, for which BrImPpOH is a potent inactivator.  相似文献   

10.
Purified Drosophila lebanonensis alcohol dehydrogenase (Adh) revealed one enzymically active zone in starch gel electrophoresis at pH 8.5. This zone was located on the cathode side of the origin. Incubation of D. lebanonensis Adh with NAD+ and acetone altered the electrophoretic pattern to more anodal migrating zones. D. lebanonensis Adh has an Mr of 56,000, a subunit of Mr of 28 000 and is a dimer with two active sites per enzyme molecule. This agrees with a polypeptide chain of 247 residues. Metal analysis by plasma emission spectroscopy indicated that this insect alcohol dehydrogenase is not a metalloenzyme. In studies of the substrate specificity and stereospecificity, D. lebanonensis Adh was more active with secondary than with primary alcohols. Both alkyl groups in the secondary alcohols interacted hydrophobically with the alcohol binding region of the active site. The catalytic centre activity for propan-2-ol was 7.4 s-1 and the maximum velocity of most secondary alcohols was approximately the same and indicative of rate-limiting enzyme-coenzyme dissociation. For primary alcohols the maximum velocity varied and was much lower than for secondary alcohols. The catalytic centre activity for ethanol was 2.4 s-1. With [2H6]ethanol a primary kinetic 2H isotope effect of 2.8 indicated that the interconversion of the ternary complexes was rate-limiting. Pyrazole was an ethanol-competitive inhibitor of the enzyme. The difference spectra of the enzyme-NAD+-pyrazole complex gave an absorption peak at 305 nm with epsilon 305 14.5 X 10(3) M-1 X cm-1. Concentrations and amounts of active enzyme can thus be determined. A kinetic rate assay to determine the concentration of enzyme active sites is also presented. This has been developed from active site concentrations established by titration at 305 nm of the enzyme and pyrazole with NAD+. In contrast with the amino acid composition, which indicated that D. lebanonensis Adh and the D. melanogaster alleloenzymes were not closely related, the enzymological studies showed that their active sites were similar although differing markedly from those of zinc alcohol dehydrogenases.  相似文献   

11.
Water balance mechanisms have been investigated in desert Drosophila species of the subgenus Drosophila from North America, but changes in mesic species of subgenus Drosophila from other continents have received lesser attention. We found divergent strategies for coping with desiccation stress in two species of immigrans group--D. immigrans and D. nasuta. In contrast to clinal variation for body melanization in D. immigrans, cuticular lipid mass showed a positive cline in D. nasuta across a latitudinal transect (10°46'-31°43'N). Based on isofemale lines variability, body melanization showed positive correlation with desiccation resistance in D. immigrans but not in D. nasuta. The use of organic solvents has supported water proofing role of cuticular lipids in D. nasuta but not in D. immigrans. A comparative analysis of water budget of these two species showed that higher water content, reduced rate of water loss and greater dehydration tolerance confer higher desiccation resistance in D. immigrans while the reduced rate of water loss is the only possible mechanism to enhance desiccation tolerance in D. nasuta. We found that carbohydrates act as metabolic fuel during desiccation stress in both the species, whereas their rates of utilization differ significantly between these two species. Further, acclimation to dehydration stress improved desiccation resistance due to increase in the level of carbohydrates in D. immigrans but not in D. nasuta. Thus, populations of D. immigrans and D. nasuta have evolved different water balance mechanisms under shared environmental conditions. Multiple measures of desiccation resistance in D. immigrans but reduction in water loss in D. nasuta are consistent with their different levels of adaptive responses to wet and dry conditions on the Indian subcontinent.  相似文献   

12.
黄菊  郝莉  刘愫  李林  张文霞  戴灼华 《遗传学报》2002,29(5):417-423
果蝇immigrans种组中的curviceps种亚组是1992年新建立的中国特有果蝇类群。该种亚组中的物种主要分布在中国大陆和台湾。目前除了形态学水平的研究外,还没有其他证据支持建立该种亚组的合理性及其起源和种系发生地位。为了在DNA分子水平上探讨果蝇curviceps种亚组在果蝇immigrans种组中的种系发生地位,从而为今后更深入地研究中国特有果蝇,甚至为果蝇亚属的进化遗传学提供理论依据,测定了immigrans种组5个种亚组(nasuta、immigrans、hypocausta、quadrilineata、curviceps)中12个代表物种的rDNA的ITS1和部分Adh基因的序列。其中ITS1序列的长度为513-587bp,共有191个信息位点;Adh基因片段的长度在714-747bp之间,共99个信息位点。考虑到单个分子提供的信息较少,将两个分子的序列综合起来,组成一个较长的复合序列。分别根据ITS1,Adh和两个分子的复合序列排比(Alignment)结果,和最大简约法和邻接法构建分子系统树,其中根据复合序列构建的系统树与形态学研究结果最为一致。分子树显示curviceps种亚组的特种确定单独形成一个分枝,为种亚组级的分类阶元,支持了形态学将其建立为一个新种亚组。根据Kimura距离,估算了复合分子的替换速率约为每百万年1.48%,进而计算出5个种亚组的分 歧年代。结合各物种的地理分布,推测了immigrans种组的进化历史:curviceps种亚组与quadrilineata种亚组的亲缘关系最近,主要分布在中国南部的温带地区。它们之间的分歧时间大约为3.4百万年,是最年轻的两个种亚组。主要分布在苏门答腊及附近的热带地区的hypocausta种亚组的物种是最早分化出来的,与其他种亚组的分歧时间约为9.2百万年。该结果与形态学和生物地理学研究相吻合。值得一提是的,目前归属仍存在争议的物种D.neohypocausta,在分子系统树中与hypocausta种亚组的物种相距较远,而与immiagrasn种亚组的关系较近,但分枝置信度较低(<50%)。由于还缺乏其他方面的证据,因此D.neohypocausta的归属有待今后的研究来作定论。  相似文献   

13.
We have been working to develop an enzymatic assay for the alcohol 2-methyl-3-buten-2-ol (232-MB), which is produced and emitted by certain pines. To this end we have isolated the soil bacterium Pseudomonas putida MB-1, which uses 232-MB as a sole carbon source. Strain MB-1 contains inducible 3-methyl-2-buten-1-ol (321-MB) and 3-methyl-2-buten-1-al dehydrogenases, suggesting that 232-MB is metabolized by isomerization to 321-MB followed by oxidation. 321-MB dehydrogenase was purified to near-homogeneity and found to be a tetramer (151 kDa) with a subunit mass of 37,700 Da. It catalyzes NAD+-dependent, reversible oxidation of 321-MB to 3-methyl-2-buten-1-al. The optimum pH for the oxidation reaction was 10.0, while that for the reduction reaction was 5.4. 321-MB dehydrogenase oxidized a wide variety of aliphatic and aromatic alcohols but exhibited the highest catalytic specificity with allylic or benzylic substrates, including 321-MB, 3-chloro-2-buten-1-ol, and 3-aminobenzyl alcohol. The N-terminal sequence of the enzyme contained a region of 64% identity with the TOL plasmid-encoded benzyl alcohol dehydrogenase of P. putida. The latter enzyme and the chromosomally encoded benzyl alcohol dehydrogenase of Acinetobacter calcoaceticus were also found to catalyze 321-MB oxidation. These findings suggest that 321-MB dehydrogenase and other bacterial benzyl alcohol dehydrogenases are broad-specificity allylic and benzylic alcohol dehydrogenases that, in conjunction with a 232-MB isomerase, might be useful in an enzyme-linked assay for 232-MB.  相似文献   

14.
Reported kinetic pH dependence data for alcohol dehydrogenase from Drosophila melanogaster are analyzed with regard to differences in rate behaviour between this non-metallo enzyme and the zinc-containing liver alcohol dehydrogenase present in vertebrates. For the Drosophila enzyme a mechanism of action is proposed according to which catalytic proton release to solution during alcohol oxidation occurs at the binary-complex level as an obligatory step preceding substrate binding. Such proton release involves an ionizing group with a pKa of about 7.6 in the enzyme.NAD+ complex, tentatively identified as a tyrosyl residue. The ionized form of this group is proposed to participate in the binding of alcohol substrates and to act as a nucleophilic catalyst of the subsequent step of hydride ion transfer from the bound alcohol to NAD+. Herein lie fundamental mechanistic differences between the metallo and non-metallo short chain alcohol dehydrogenases.  相似文献   

15.
To analyze Drosophila alcohol dehydrogenase gene (Adh) expression and tissue distribution at various developmental stages, we devised several immunochemical techniques making use of monoclonal antibodies against Drosophila alcohol dehydrogenase (ADH), which had been obtained previously. We here report their application to analyze the expression of Adh in a wild-type strain of D. melanogaster. s-ELISA tests were performed to evaluate fluctuations in ADH content and specific activity during development in individual organs as well as in whole individuals. In all cases, ADH specific activity appeared to be quite constant, which implies that variations in enzyme activity reflect differences in protein content. Immunoblottings of crude homogenates revealed immunoreactive low relative molecular mass peptides in addition to the 27 KD monomeric band, showing a conserved banding pattern in different organs and developmental stages. Immunohistochemical assays on whole organs were used to analyze the general pattern of ADH distribution. Immunoperoxidase staining of cryosections proved to be of crucial relevance, as it yielded full details of the tissue localization of ADH within the ADH-positive organs. We have shown not only that ADH displays a specific distribution in some organs but also that the enzyme is restricted to certain cell types.  相似文献   

16.
Abstract. 1. Potential Drosophila breeding sites were collected from a fruit market, and the adults allowed to emerge from them.
2. D.immigrans and D.melanogaster were the species with the highest frequency of emergences from citrus fruit.
3. D.immigrans was especially associated with citrus fruits infected with Penicillium italicum or P.digitatum , two specialist moulds of citrus. D.melanogaster was more often found in uninfected fruit.
4. In the laboratory D.immigrans larvae survived better than D.melanogaster larvae on Penicillium-infected citrus fruit.
5. These adaptations suggest that D.immigrans may have originally evolved as a citrus specialist, becoming a domestic species as these fruits were exploited commercially.  相似文献   

17.
Substitutions rates are expected to be rather constant when a gene is compared between species. To analyze this feature, Ka/Ks ratios have been studied for Alcohol dehydrogenase (Adh) and Alcohol dehydrogenase duplication (Adh-dup) genes in Drosophila species. Adh Ka/Ks values are lower in intrasubgenus comparisons involving species of the Sophophora group than when these species are compared to the D. immigrans and S. lebanonensis, and this difference does not occur in the Adh-dup comparisons.  相似文献   

18.
We have been working to develop an enzymatic assay for the alcohol 2-methyl-3-buten-2-ol (232-MB), which is produced and emitted by certain pines. To this end we have isolated the soil bacterium Pseudomonas putida MB-1, which uses 232-MB as a sole carbon source. Strain MB-1 contains inducible 3-methyl-2-buten-1-ol (321-MB) and 3-methyl-2-buten-1-al dehydrogenases, suggesting that 232-MB is metabolized by isomerization to 321-MB followed by oxidation. 321-MB dehydrogenase was purified to near-homogeneity and found to be a tetramer (151 kDa) with a subunit mass of 37,700 Da. It catalyzes NAD+-dependent, reversible oxidation of 321-MB to 3-methyl-2-buten-1-al. The optimum pH for the oxidation reaction was 10.0, while that for the reduction reaction was 5.4. 321-MB dehydrogenase oxidized a wide variety of aliphatic and aromatic alcohols but exhibited the highest catalytic specificity with allylic or benzylic substrates, including 321-MB, 3-chloro-2-buten-1-ol, and 3-aminobenzyl alcohol. The N-terminal sequence of the enzyme contained a region of 64% identity with the TOL plasmid-encoded benzyl alcohol dehydrogenase of P. putida. The latter enzyme and the chromosomally encoded benzyl alcohol dehydrogenase of Acinetobacter calcoaceticus were also found to catalyze 321-MB oxidation. These findings suggest that 321-MB dehydrogenase and other bacterial benzyl alcohol dehydrogenases are broad-specificity allylic and benzylic alcohol dehydrogenases that, in conjunction with a 232-MB isomerase, might be useful in an enzyme-linked assay for 232-MB.  相似文献   

19.
The alcohol dehydrogenase (ADH) from Drosophila lebanonensis shows 82% positional identity to the alcohol dehydrogenases from Drosophila melanogaster. These insect ADHs belong to the short-chain dehydrogenase/reductase family which lack metal ions in their active site. In this family, it appears that the function of zinc in medium chain dehydrogenases has been replaced by three amino acids, Ser138, Tyr151 and Lys155. The present work on D. lebanonensis ADH has been performed in order to obtain information about reaction mechanism, and possible differences in topology and electrostatic properties in the vicinity of the catalytic residues in ADHs from various species of Drosophila. Thus the pH dependence of various kinetic coefficients has been studied. Both in the oxidation of alcohols and in the reduction of aldehydes, the reaction mechanism of D. lebanonensis ADH in the pH 6-10 region was consistent with a compulsory ordered pathway, with the coenzymes as the outer substrates. Over the entire pH region, the rate limiting step for the oxidation of secondary alcohols such as propan-2-ol was the release of the coenzyme product from the enzyme-NADH complex. In the oxidation of ethanol at least two steps were rate limiting, the hydride transfer step and the dissociation of NADH from the binary enzyme-NADH product complex. In the reduction of acetaldehyde, the rate limiting step was the dissociation of NAD+ from the binary enzyme-NAD+ product complex. The pH dependences of the kon velocity curves for the two coenzymes were the opposite of each other, i.e. kon increased for NAD+ and decreased for NADH with increasing pH. The two curves appeared complex and the kon velocity for the two coenzymes seemed to be regulated by several groups in the free enzyme. The kon velocity for ethanol and the ethanol competitive inhibitor pyrazole increased with pH and was regulated through the ionization of a single group in the binary enzyme-NAD+ complex, with a pKa value of 7.1. The kon velocity for acetaldehyde was pH independent and showed that in the enzyme-NADH complex, the pKa value of the catalytic residue must be above 10. The koff velocity of NAD+ appeared to be partly regulated by the catalytic residue, and protonation resulted in an increased dissociation rate. The koff velocity for NADH and the hydride transfer step was pH independent. In D. lebanonensis ADH, the pKa value of the catalytic residue was 0.5 pH units lower than in the ADHS alleloenzyme from D. melanogaster. Thus it can be concluded that while most of the topology of the active site is mainly conserved in these two distantly related enzymes, the microenvironment and electrostatic properties around the catalytic residues differ.  相似文献   

20.
Olfactory response and resource utilization in Drosophila were compared among three domestic (D. melanogaster, D. simulans, D. immigrans) and one Australian endemic (D. lativittata) species. Olfactory response was measured in a choice type olfactometer (Fuyama, 1976). The following chemicals common in Drosophila resources were used as odourants: acetaldehyde, acetic acid, propionic acid, methanol, ethanol, n-propanol, isopropanol, n-butanol. Resource status of these chemicals was determined either from the literature or by adult longevity tests.
All species were attracted by acetaldehyde, while methanol, isopropanol and n-butanol were unattractive. Ethanol attracted all species except D. immigrans , while only D. lativittata and D. melanogaster were attracted to n-propanol, propionic acid and acetic acid
Methanol and isopropanol were not utilized as resources by any of the species, while D. melanogaster and D. lativittata showed greater utilization/tolerance of the other chemicals. Some correlation between resource utilization and olfactory response was found at the interspecific level, although not all chemicals utilized as resources are attractants. The adaptive significance of the interspecific variation in olfactory response is discussed, especially in relation to habitats selected. The results provide suggestions for habitat selection studies at the intraspecific level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号