首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aziz A  Harrop SP  Bishop NE 《PloS one》2011,6(1):e14547
Autism spectrum disorders (ASDs) are a group of commonly occurring, highly-heritable developmental disabilities. Human genes c3orf58 or Deleted In Autism-1 (DIA1) and cXorf36 or Deleted in Autism-1 Related (DIA1R) are implicated in ASD and mental retardation. Both gene products encode signal peptides for targeting to the secretory pathway. As evolutionary medicine has emerged as a key tool for understanding increasing numbers of human diseases, we have used an evolutionary approach to study DIA1 and DIA1R. We found DIA1 conserved from cnidarians to humans, indicating DIA1 evolution coincided with the development of the first primitive synapses. Nematodes lack a DIA1 homologue, indicating Caenorhabditis elegans is not suitable for studying all aspects of ASD etiology, while zebrafish encode two DIA1 paralogues. By contrast to DIA1, DIA1R was found exclusively in vertebrates, with an origin coinciding with the whole-genome duplication events occurring early in the vertebrate lineage, and the evolution of the more complex vertebrate nervous system. Strikingly, DIA1R was present in schooling fish but absent in fish that have adopted a more solitary lifestyle. An additional DIA1-related gene we named DIA1-Like (DIA1L), lacks a signal peptide and is restricted to the genomes of the echinoderm Strongylocentrotus purpuratus and cephalochordate Branchiostoma floridae. Evidence for remarkable DIA1L gene expansion was found in B. floridae. Amino acid alignments of DIA1 family gene products revealed a potential Golgi-retention motif and a number of conserved motifs with unknown function. Furthermore, a glycine and three cysteine residues were absolutely conserved in all DIA1-family proteins, indicating a critical role in protein structure and/or function. We have therefore identified a new metazoan protein family, the DIA1-family, and understanding the biological roles of DIA1-family members will have implications for our understanding of autism and mental retardation.  相似文献   

2.
Premature ovarian failure (POF) is characterized by elevated gonadotropins and amenorrhea in women aged <40 years. In a Lebanese family with five sisters who received the diagnosis of POF, we established linkage to the long arm of the X chromosome (between Xq21.1 and Xq21.3.3), using whole-genome SNP typing and homozygosity-by-descent mapping. By sequencing one candidate gene within that region, POF1B, we identified a point mutation localized in exon 10. This substitution of a nucleotide (G-->A), at position 1123, results in an arginine-->glutamine mutation of the protein sequence at position 329 (mutation R329Q). All the affected family members were homozygous for the mutation, whereas the unaffected members were heterozygous. Because POF1B shares high homology with the tail portion of the human myosin, we assessed the ability of both wild-type and mutant POF1B proteins to bind nonmuscle actin filaments in vitro. We found that the capacity of the mutant protein to bind nonmuscle actin filaments was diminished fourfold compared with the wild type, suggesting a function of POF1B in germ-cell division. Our study suggests that a homozygous point mutation in POF1B influences the pathogenesis of POF by altering POF1B binding to nonmuscle actin filaments.  相似文献   

3.
Premature ovarian failure (POF) is a rare, heterogeneous disorder characterized by cessation of menstruation occurring before the age of 40 years. Genetic etiology is responsible for perhaps 25% of cases, but most cases are sporadic and unexplained. In this study, through whole exome sequencing in a non-consanguineous family having four affected members with POF and Sanger sequencing in 432 sporadic cases, we identified three novel mutations in the fusion gene CSB-PGBD3. Subsequently functional studies suggest that mutated CSB-PGBD3 fusion protein was impaired in response to DNA damage, as indicated by delayed or absent recruitment to damaged sites. Our data provide the first evidence that mutations in the CSB-PGBD3 fusion protein can cause human disease, even in the presence of functional CSB, thus potentially explaining conservation of the fusion protein for 43 My since marmoset. The localization of the CSB-PGBD3 fusion protein to UVA-induced nuclear DNA repair foci further suggests that the CSB-PGBD3 fusion protein, like many other proteins that can cause POF, modulates or participates in DNA repair.  相似文献   

4.
5.
6.
7.

Background

The human condition known as Premature Ovarian Failure (POF) is characterized by loss of ovarian function before the age of 40. A majority of POF cases are sporadic, but 10–15% are familial, suggesting a genetic origin of the disease. Although several causal mutations have been identified, the etiology of POF is still unknown for about 90% of the patients.

Methodology/Principal Findings

We report a genome-wide linkage and homozygosity analysis in one large consanguineous Middle-Eastern POF-affected family presenting an autosomal recessive pattern of inheritance. We identified two regions with a LODmax of 3.26 on chromosome 7p21.1-15.3 and 7q21.3-22.2, which are supported as candidate regions by homozygosity mapping. Sequencing of the coding exons and known regulatory sequences of three candidate genes (DLX5, DLX6 and DSS1) included within the largest region did not reveal any causal mutations.

Conclusions/Significance

We detect two novel POF-associated loci on human chromosome 7, opening the way to the identification of new genes involved in the control of ovarian development and function.  相似文献   

8.
9.
10.
The human complement regulatory serum protein factor H (FH) is a promising future biopharmaceutical. Defects in the gene encoding FH are associated with human diseases like severe kidney and retinal disorders in the form of atypical haemolytic uremic syndrome (aHUS), membranoproliferative glomerulonephritis II (MPGN II) or age‐related macular degeneration (AMD). There is a current need to apply intact full‐length FH for the therapy of patients with congenital or acquired defects of this protein. Application of purified or recombinant FH (rFH) to these patients is an important and promising approach for the treatment of these diseases. However, neither protein purified from plasma of healthy individuals nor recombinant protein is currently available on the market. Here, we report the first stable expression of the full‐length human FH cDNA and the subsequent production of this glycoprotein in a plant system. The moss Physcomitrella patens perfectly suits the requirements for the production of complex biopharmaceuticals as this eukaryotic system not only offers an outstanding genetical accessibility, but moreover, proteins can be produced safely in scalable photobioreactors without the need for animal‐derived medium compounds. Transgenic moss lines were created, which express the human FH cDNA and target the recombinant protein to the culture supernatant via a moss‐derived secretion signal. Correct processing of the signal peptide and integrity of the moss‐produced rFH were verified via peptide mapping by mass spectrometry. Ultimately, we show that the rFH displays complement regulatory activity comparable to FH purified from plasma.  相似文献   

11.
NOBOX homeobox mutation causes premature ovarian failure   总被引:3,自引:0,他引:3       下载免费PDF全文
NOBOX (newborn ovary homeobox gene) is an oocyte-specific homeobox gene that plays a critical role in early folliculogenesis and represents a candidate gene for nonsyndromic ovarian failure. We investigated whether mutations in the NOBOX gene cause premature ovarian failure (POF). We sequenced the NOBOX gene in 96 white women with POF and discovered seven known single-nucleotide polymorphisms and four novel variations, two of which, p.Arg355His and p.Arg360Gln, cause missense mutations in the homeobox domain. Electrophoretic mobility shift assay (EMSA) confirmed that the missense mutation, p.Arg355His, disrupted NOBOX homeodomain binding to NOBOX DNA-binding element (NBE) and had a dominant negative effect on the binding of wild-type NOBOX to DNA. Our findings demonstrate that NOBOX mutations can cause POF.  相似文献   

12.
Previous studies have shown that the ovarian failure in autoimmune‐induced premature ovarian failure (POF) mice could be improved by the transplantation of human placenta‐derived mesenchymal stem cells (hPMSCs); however, the protective mechanism of hPMSCs transplantation on ovarian dysfunction remains unclear. Ovarian dysfunction is closely related to the apoptosis of granulosa cells (GCs). To determine the effects of hPMSCs transplantation on GCs apoptosis, an autoimmune POF mice model was established with zona pellucida glycoprotein 3 (ZP3) peptide. It is reported that the inositol‐requiring enzyme 1α (IRE1α) and its downstream molecules play a central role in the endoplasmic reticulum (ER) stress‐induced apoptosis pathway. So the aim of this study is to investigate whether hPMSCs transplantation attenuated GCs apoptosis via inhibiting ER stress IRE1α signaling pathway. The ovarian dysfunction, follicular dysplasia, and GCs apoptosis were observed in the POF mice. And the IRE1α pathway was activated in ovaries of POF mice, as demonstrated by, increased X‐box binding protein 1 (XBP1), up‐regulated 78 kDa glucose‐regulated protein (GRP78) and caspase‐12. Following transplantation of hPMSCs, the ovarian structure and function were significantly improved in POF mice. In addition, the GCs apoptosis was obviously attenuated and IRE1α pathway was significantly inhibited. Transplantation of hPMSCs suppressed GCs apoptosis‐induced by ER stress IRE1α signaling pathway in POF mice, which might contribute to the hPMSCs transplantation‐mediating ovarian function recovery.  相似文献   

13.
Premature ovarian failure (POF) is a refractory disease for clinical treatment with the goal of restoring fertility. In this study, umbilical cord mesenchymal stem cells on a collagen scaffold (collagen/UC-MSCs) can activate primordial follicles in vitro via phosphorylation of FOXO3a and FOXO1. Transplantation of collagen/UC-MSCs to the ovaries of POF patients rescued overall ovarian function, evidenced by elevated estradiol concentrations, improved follicular development, and increased number of antral follicles. Successful clinical pregnancy was achieved in women with POF after transplantation of collagen/UC-MSCs or UC-MSCs. In summary, collagen/UC-MSC transplantation may provide an effective treatment for POF.  相似文献   

14.
Malignant transformation of the ovarian surface epithelium (OSE) accounts for most ovarian carcinoma. Detection of preneoplastic changes in the OSE leading to overt malignancy is important in prevention and management of ovarian cancer. We identified OSE proteins with altered expression derived from women with a family history (FH) of ovarian and/or breast cancer and mutations in the BRCA1 tumor suppressor gene. Proteins from SV-40-transformed FH-OSE cell lines and control OSE lines derived from women without such histories (non-family history) were separated by two-dimensional PAGE. Gels were analyzed, a protein data base was created, and proteins were characterized according to their molecular weight, isoelectric point, and relative abundance. Mass spectrometry was performed on tryptic protein digests, and data bases were searched for known proteins with the same theoretical tryptic peptide masses. Several proteins showed altered expression in the FH-OSE cells. Beta-tubulin and to a lesser extent ubiquitin carboxyl-terminal hydrolase and glyoxalase 1 appeared to be up-regulated. In contrast, proteins suppressed in FH lines include the 27-kDa heat shock protein, translationally controlled tumor protein, and several proteins associated with actin modification such as actin prepeptide, F-actin capping protein alpha subunit, and cofilin. Sequencing of several cofilin gel spots revealed phosphorylation of serine 3, a post-translational modification associated with decreased actin binding and cytoskeletal reorganization. Two-dimensional Western blots probed with cofilin antibody showed multiple protein spots with isoelectric points of 6-9 pH units. Blots of one-dimensional gels showed a significant reduction in cofilin expression in three FH lines when compared with three non-family history lines (p < or = 0.05). Identification of these and other OSE proteins may be useful in detecting changes suggestive of increased risk of developing preneoplastic disease and defining the possible role(s) of the BRCA1 gene in regulation of OSE cell function.  相似文献   

15.
Premature ovarian failure (POF) is characterized by amenorrhea and high serum levels of follicle-stimulating hormone (FSH). POF causes female infertility and represents a substantial women's health risk affecting 1% of women by age 40. Although ovarian autoimmunity has been associated with POF, the identity of ovarian Ags recognized is unknown. In this study, we show that autoimmune-targeted disruption of the pituitary-ovarian axis leads to POF. Immunization of SWXJ female mice with the p215-234 peptide derived from mouse inhibin-alpha activates CD4(+) T cells and induces experimental autoimmune oophoritis with a unique biphasic phenotype characterized by an early stage of enhanced fertility followed by a delayed stage of POF. Affected mice show high serum levels of inhibin-alpha-neutralizing Abs that prevent inhibin-mediated down-regulation of activin-induced pituitary FSH release. The loss of activin/FSH down-regulation leads to prolonged metestrus-diestrus, superovulation, increased numbers of mature follicles, increased offspring, accelerated depletion of primordial follicles, and ultimately premature infertility. Thus, inhibin-alpha-targeted experimental autoimmune oophoritis is initiated by CD4(+) Th1 T cells that stimulate B cells to produce inhibin-alpha-neutralizing Abs directly capable of mediating POF and transferring disease into naive recipients. Our inhibin-alpha autoimmune model of POF shows how premature infertility may develop in the context of elevated FSH levels thereby closely mimicking the hallmark features of human POF.  相似文献   

16.
Epidermal growth factor (EGF) repeat-containing proteins constitute an expanding family of proteins involved in several cellular activities such as blood coagulation, fibrinolysis, cell adhesion, and neural and vertebrate development. By using a bioinformatic approach, we have identified a new member of this family named MAEG (MAM- and EGF-containing gene; HGMW-approved gene symbol and gene name). Sequence analysis indicates that MAEG encodes a secreted protein characterized by the presence of five EGF repeats, three of which display a Ca(2+)-binding consensus sequence. In addition, a MAM domain is also present at the C-terminus of the predicted protein product. The human and murine full-length cDNAs were identified and mapped to human Xp22 and to the mouse syntenic region. Northern analysis indicates that MAEG is expressed early during development. Taken together, these data render MAEG a candidate for human and murine developmental disorders.  相似文献   

17.
Women with balanced translocations between the long arm of the X chromosome (Xq) and an autosome frequently suffer premature ovarian failure (POF). Two "critical regions" for POF which extend from Xq13-->q22 and from Xq22-->q26 have been identified using cytogenetics. To gain insight into the mechanism(s) responsible for ovarian failure in women with X;autosome translocations, we have molecularly characterized the translocation breakpoints of nine X chromosomes. We mapped the breakpoints using somatic cell hybrids retaining the derivative autosome and densely spaced markers from the X-chromosome physical map. One of the POF-associated breakpoints in a critical region (Xq25) mapped to a sequenced PAC clone. The translocation disrupts XPNPEP2, which encodes an Xaa-Pro aminopeptidase that hydrolyzes N-terminal Xaa-Pro bonds. XPNPEP2 mRNA was detected in fibroblasts that carry the translocation, suggesting that this gene at least partially escapes X inactivation. Although the physiologic substrates for the enzyme are not known, XPNPEP2 is a candidate gene for POF. Our breakpoint mapping data will help to identify additional candidate POF genes and to delineate the Xq POF critical region(s).  相似文献   

18.
Aziz A  Harrop SP  Bishop NE 《PloS one》2011,6(1):e14534

Background

Autism spectrum disorders (ASDs) are frequently occurring disorders diagnosed by deficits in three core functional areas: social skills, communication, and behaviours and/or interests. Mental retardation frequently accompanies the most severe forms of ASDs, while overall ASDs are more commonly diagnosed in males. Most ASDs have a genetic origin and one gene recently implicated in the etiology of autism is the Deleted-In-Autism-1 (DIA1) gene.

Methodology/Principal Findings

Using a bioinformatics-based approach, we have identified a human gene closely related to DIA1, we term DIA1R (DIA1-Related). While DIA1 is autosomal (chromosome 3, position 3q24), DIA1R localizes to the X chromosome at position Xp11.3 and is known to escape X-inactivation. The gene products are of similar size, with DIA1 encoding 430, and DIA1R 433, residues. At the amino acid level, DIA1 and DIA1R are 62% similar overall (28% identical), and both encode signal peptides for targeting to the secretory pathway. Both genes are ubiquitously expressed, including in fetal and adult brain tissue.

Conclusions/Significance

Examination of published literature revealed point mutations in DIA1R are associated with X-linked mental retardation (XLMR) and DIA1R deletion is associated with syndromes with ASD-like traits and/or XLMR. Together, these results support a model where the DIA1 and DIA1R gene products regulate molecular traffic through the cellular secretory pathway or affect the function of secreted factors, and functional deficits cause disorders with ASD-like symptoms and/or mental retardation.  相似文献   

19.
Summary Familial hypercholesterolemia (FH), at a prevalence of about 1 in 200 in the French-Canadian population, is caused by a 10-kb deletion in the low-density lipoprotein (LDL) receptor gene in 60% of French-Canadian FH heterozygotes. We genotyped 159 FH patients who carry this common mutation and 221 healthy French-Canadian controls for five DNA restriction fragment length polymorphisms (RFLPs) of the LDL receptor gene. The allele numbers for four of the five RFLPs differed significantly (P < 0.001) between FH patients and control subjects. Our results suggest that the 10-kb deletion carrier allele is associated with a single haplotype (called the B haplotype). In a family study including a patient homozygous for the 10-kb deletion, we showed that the B haplotype cosegregates with the deletion in affected members and that the B haplotype is also associated with the normal allele in some members of the family. We identified 15 different haplotypes for the normal allele in 10-kb deletion carrier FH heterozygotes. These results offer strong support, at a molecular level, for the hypothesis of a founder effect for the 10-kb deletion in the French-Canadian population.This work was presented in part at the meeting: Advances in Gene Technology: the molecular biology of human genetic disease, Miami, Florida, 1991  相似文献   

20.
The use of data‐independent acquisition (DIA) approaches for the reproducible and precise quantification of complex protein samples has increased in the last years. The protein information arising from DIA analysis is stored in digital protein maps (DIA maps) that can be interrogated in a targeted way by using ad hoc or publically available peptide spectral libraries generated on the same sample species as for the generation of the DIA maps. The restricted availability of certain difficult‐to‐obtain human tissues (i.e., brain) together with the caveats of using spectral libraries generated under variable experimental conditions limits the potential of DIA. Therefore, DIA workflows would benefit from high‐quality and extended spectral libraries that could be generated without the need of using valuable samples for library production. We describe here two new targeted approaches, using either classical data‐dependent acquisition repositories (not specifically built for DIA) or ad hoc mouse spectral libraries, which enable the profiling of human brain DIA data set. The comparison of our results to both the most extended publically available human spectral library and to a state‐of‐the‐art untargeted method supports the use of these new strategies to improve future DIA profiling efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号