首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present paper concentrates on the impact of visual attention task on structure of the brain functional and effective connectivity networks using coherence and Granger causality methods. Since most studies used correlation method and resting-state functional connectivity, the task-based approach was selected for this experiment to boost our knowledge of spatial and feature-based attention. In the present study, the whole brain was divided into 82 sub-regions based on Brodmann areas. The coherence and Granger causality were applied to construct functional and effective connectivity matrices. These matrices were converted into graphs using a threshold, and the graph theory measures were calculated from it including degree and characteristic path length. Visual attention was found to reveal more information during the spatial-based task. The degree was higher while performing a spatial-based task, whereas characteristic path length was lower in the spatial-based task in both functional and effective connectivity. Primary and secondary visual cortex (17 and 18 Brodmann areas) were highly connected to parietal and prefrontal cortex while doing visual attention task. Whole brain connectivity was also calculated in both functional and effective connectivity. Our results reveal that Brodmann areas of 17, 18, 19, 46, 3 and 4 had a significant role proving that somatosensory, parietal and prefrontal regions along with visual cortex were highly connected to other parts of the cortex during the visual attention task. Characteristic path length results indicated an increase in functional connectivity and more functional integration in spatial-based attention compared with feature-based attention. The results of this work can provide useful information about the mechanism of visual attention at the network level.  相似文献   

2.
One key problem in computational neuroscience and neural engineering is the identification and modeling of functional connectivity in the brain using spike train data. To reduce model complexity, alleviate overfitting, and thus facilitate model interpretation, sparse representation and estimation of functional connectivity is needed. Sparsities include global sparsity, which captures the sparse connectivities between neurons, and local sparsity, which reflects the active temporal ranges of the input-output dynamical interactions. In this paper, we formulate a generalized functional additive model (GFAM) and develop the associated penalized likelihood estimation methods for such a modeling problem. A GFAM consists of a set of basis functions convolving the input signals, and a link function generating the firing probability of the output neuron from the summation of the convolutions weighted by the sought model coefficients. Model sparsities are achieved by using various penalized likelihood estimations and basis functions. Specifically, we introduce two variations of the GFAM using a global basis (e.g., Laguerre basis) and group LASSO estimation, and a local basis (e.g., B-spline basis) and group bridge estimation, respectively. We further develop an optimization method based on quadratic approximation of the likelihood function for the estimation of these models. Simulation and experimental results show that both group-LASSO-Laguerre and group-bridge-B-spline can capture faithfully the global sparsities, while the latter can replicate accurately and simultaneously both global and local sparsities. The sparse models outperform the full models estimated with the standard maximum likelihood method in out-of-sample predictions.  相似文献   

3.
The elucidation of the complex machinery used by the human brain to segregate and integrate information while performing high cognitive functions is a subject of imminent future consequences. The most significant contributions to date in this field, known as cognitive neuroscience, have been achieved by using innovative neuroimaging techniques, such as electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI), which measure variations in both the time and the space of some interpretable physical magnitudes. Extraordinary maps of cerebral activation involving function-restricted brain areas, as well as graphs of the functional connectivity between them, have been obtained from EEG and fMRI data by solving some spatio-temporal inverse problems, which constitutes a top-down approach. However, in many cases, a natural bridge between these maps/graphs and the causal physiological processes is lacking, leading to some misunderstandings in their interpretation. Recent advances in the comprehension of the underlying physiological mechanisms associated with different cerebral scales have provided researchers with an excellent scenario to develop sophisticated biophysical models that permit an integration of these neuroimage modalities, which must share a common aetiology. This paper proposes a bottom-up approach, involving physiological parameters in a specific mesoscopic dynamic equations system. Further observation equations encapsulating the relationship between the mesostates and the EEG/fMRI data are obtained on the basis of the physical foundations of these techniques. A methodology for the estimation of parameters from fused EEG/fMRI data is also presented. In this context, the concepts of activation and effective connectivity are carefully revised. This new approach permits us to examine and discuss some future prospects for the integration of multimodal neuroimages.  相似文献   

4.
The identification of effective connectivity from time-series data such as electroencephalogram (EEG) or time-resolved function magnetic resonance imaging (fMRI) recordings is an important problem in brain imaging. One commonly used approach to inference effective connectivity is based on vector autoregressive models and the concept of Granger causality. However, this probabilistic concept of causality can lead to spurious causalities in the presence of latent variables. Recently, graphical models have been used to discuss problems of causal inference for multivariate data. In this paper, we extend these concepts to the case of time-series and present a graphical approach for discussing Granger-causal relationships among multiple time-series. In particular, we propose a new graphical representation that allows the characterization of spurious causality and, thus, can be used to investigate spurious causality. The method is demonstrated with concurrent EEG and fMRI recordings which are used to investigate the interrelations between the alpha rhythm in the EEG and blood oxygenation level dependent (BOLD) responses in the fMRI. The results confirm previous findings on the location of the source of the EEG alpha rhythm.  相似文献   

5.
At present, resting state functional MRI (rsfMRI) is increasingly used in human neuropathological research. The present study aims at implementing rsfMRI in mice, a species that holds the widest variety of neurological disease models. Moreover, by acquiring rsfMRI data with a comparable protocol for anesthesia, scanning and analysis, in both rats and mice we were able to compare findings obtained in both species. The outcome of rsfMRI is different for rats and mice and depends strongly on the applied number of components in the Independent Component Analysis (ICA). The most important difference was the appearance of unilateral cortical components for the mouse resting state data compared to bilateral rat cortical networks. Furthermore, a higher number of components was needed for the ICA analysis to separate different cortical regions in mice as compared to rats.  相似文献   

6.
A neural network model capable of altering its pattern classifying properties by program input is proposed. Here the “program input” is another source of input besides the pattern input. Unlike most neural network models, this model runs as a deterministic point process of spikes in continuous time; connections among neurons have finite delays, which are set randomly according to a normal distribution. Furthermore, this model utilizes functional connectivity which is dynamic connectivity among neurons peculiar to temporal-coding neural networks with short neuronal decay time constants. Computer simulation of the proposed network has been performed, and the results are considered in light of experimental results shown recently for correlated firings of neurons. Received: 6 December 1996 / Accepted in revised form: 15 September 1997  相似文献   

7.
Studies on interactions between brain regions estimate effective connectivity, (usually) based on the causality inferences made on the basis of temporal precedence. In this study, the causal relationship is modeled by a multi-layer perceptron feed-forward artificial neural network, because of the ANN’s ability to generate appropriate input–output mapping and to learn from training examples without the need of detailed knowledge of the underlying system. At any time instant, the past samples of data are placed in the network input, and the subsequent values are predicted at its output. To estimate the strength of interactions, the measure of “Causality coefficient” is defined based on the network structure, the connecting weights and the parameters of hidden layer activation function. Simulation analysis demonstrates that the method, called “CREANN” (Causal Relationship Estimation by Artificial Neural Network), can estimate time-invariant and time-varying effective connectivity in terms of MVAR coefficients. The method shows robustness with respect to noise level of data. Furthermore, the estimations are not significantly influenced by the model order (considered time-lag), and the different initial conditions (initial random weights and parameters of the network). CREANN is also applied to EEG data collected during a memory recognition task. The results implicate that it can show changes in the information flow between brain regions, involving in the episodic memory retrieval process. These convincing results emphasize that CREANN can be used as an appropriate method to estimate the causal relationship among brain signals.  相似文献   

8.
Luo C  Qiu C  Guo Z  Fang J  Li Q  Lei X  Xia Y  Lai Y  Gong Q  Zhou D  Yao D 《PloS one》2011,7(1):e28196
Examining the spontaneous activity to understand the neural mechanism of brain disorder is a focus in recent resting-state fMRI. In the current study, to investigate the alteration of brain functional connectivity in partial epilepsy in a systematical way, two levels of analyses (functional connectivity analysis within resting state networks (RSNs) and functional network connectivity (FNC) analysis) were carried out on resting-state fMRI data acquired from the 30 participants including 14 healthy controls(HC) and 16 partial epilepsy patients. According to the etiology, all patients are subdivided into temporal lobe epilepsy group (TLE, included 7 patients) and mixed partial epilepsy group (MPE, 9 patients). Using group independent component analysis, eight RSNs were identified, and selected to evaluate functional connectivity and FNC between groups. Compared with the controls, decreased functional connectivity within all RSNs was found in both TLE and MPE. However, dissociating patterns were observed within the 8 RSNs between two patient groups, i.e, compared with TLE, we found decreased functional connectivity in 5 RSNs increased functional connectivity in 1 RSN, and no difference in the other 2 RSNs in MPE. Furthermore, the hierarchical disconnections of FNC was found in two patient groups, in which the intra-system connections were preserved for all three subsystems while the lost connections were confined to intersystem connections in patients with partial epilepsy. These findings may suggest that decreased resting state functional connectivity and disconnection of FNC are two remarkable characteristics of partial epilepsy. The selective impairment of FNC implicated that it is unsuitable to understand the partial epilepsy only from global or local perspective. We presumed that studying epilepsy in the multi-perspective based on RSNs may be a valuable means to assess the functional changes corresponding to specific RSN and may contribute to the understanding of the neuro-pathophysiological mechanism of epilepsy.  相似文献   

9.
Li L  Zhang JX  Jiang T 《PloS one》2011,6(7):e22357

Background

Visual working memory (VWM) helps us store visual information to prepare for subsequent behavior. The neuronal mechanisms for sustaining coherent visual information and the mechanisms for limited VWM capacity have remained uncharacterized. Although numerous studies have utilized behavioral accuracy, neural activity, and connectivity to explore the mechanism of VWM retention, little is known about the load-related changes in functional connectivity for hemi-field VWM retention.

Methodology/Principal Findings

In this study, we recorded electroencephalography (EEG) from 14 normal young adults while they performed a bilateral visual field memory task. Subjects had more rapid and accurate responses to the left visual field (LVF) memory condition. The difference in mean amplitude between the ipsilateral and contralateral event-related potential (ERP) at parietal-occipital electrodes in retention interval period was obtained with six different memory loads. Functional connectivity between 128 scalp regions was measured by EEG phase synchronization in the theta- (4–8 Hz), alpha- (8–12 Hz), beta- (12–32 Hz), and gamma- (32–40 Hz) frequency bands. The resulting matrices were converted to graphs, and mean degree, clustering coefficient and shortest path length was computed as a function of memory load. The results showed that brain networks of theta-, alpha-, beta-, and gamma- frequency bands were load-dependent and visual-field dependent. The networks of theta- and alpha- bands phase synchrony were most predominant in retention period for right visual field (RVF) WM than for LVF WM. Furthermore, only for RVF memory condition, brain network density of theta-band during the retention interval were linked to the delay of behavior reaction time, and the topological property of alpha-band network was negative correlation with behavior accuracy.

Conclusions/Significance

We suggest that the differences in theta- and alpha- bands between LVF and RVF conditions in functional connectivity and topological properties during retention period may result in the decline of behavioral performance in RVF task.  相似文献   

10.
11.
How can the development of an ordered array of neuronal connections be encoded in the genome? Results on the establishment of sensory connections in insects indicate that this programming is a multi-stepped process which begins as soon as the first axons develop. Because each step relies on the previous level of organization, the first steps of the process are subject to intense structural constraints, and therefore have been largely conserved through evolution. What is known of the molecular biology of some essential steps, like the differentiation of excitable cells, their aggregation in nerve cords, and the diversification of a periodic structure, supports the idea that the basic organization of the CNS evolved before the divergence between the chordate and the arthropod/annelid lineage.  相似文献   

12.

Background

Moral sensitivity refers to the interpretive awareness of moral conflict and can be justice or care oriented. Justice ethics is associated primarily with human rights and the application of moral rules, whereas care ethics is related to human needs and a situational approach involving social emotions. Among the core brain regions involved in moral issue processing are: medial prefrontal cortex, anterior (ACC) and posterior (PCC) cingulate cortex, posterior superior temporal sulcus (pSTS), insula and amygdala. This study sought to inform the long standing debate of whether care and justice moral ethics represent one or two different forms of cognition.

Methodology/Principal Findings

Model-free and model-based connectivity analysis were used to identify functional neural networks underlying care and justice ethics for a moral sensitivity task. In addition to modest differences in patterns of associated neural activity, distinct modes of functional and effective connectivity were observed for moral sensitivity for care and justice issues that were modulated by individual variation in moral ability.

Conclusions/Significance

These results support a neurobiological differentiation between care and justice ethics and suggest that human moral behavior reflects the outcome of integrating opposing rule-based, self-other perspectives, and emotional responses.  相似文献   

13.
The cell surface receptor Notch contributes to the development of nearly every tissue in most metazoans by controlling the fates and differentiation of cells. Recent results have now established that Notch also regulates the connectivity of the nervous system, and does so at a variety of levels, including specification of neuronal identity, division, survival and migration, as well as axon guidance, morphogenesis of dendritic arbors and weighting of synapse strength. To these ends, Notch engages at least two signal transduction pathways, one that controls nuclear gene expression and another that directly targets the cytoskeleton. Coordinating the many functions of Notch to produce neural structure is thus a pivotal aspect of building and maintaining the nervous system.  相似文献   

14.
Several studies posit energy as a constraint on the coding and processing of information in the brain due to the high cost of resting and evoked cortical activity. This suggestion has been addressed theoretically with models of a single neuron and two coupled neurons. Neural mass models (NMMs) address mean-field based modeling of the activity and interactions between populations of neurons rather than a few neurons. NMMs have been widely employed for studying the generation of EEG rhythms, and more recently as frameworks for integrated models of neurophysiology and functional MRI (fMRI) responses. To date, the consequences of energy constraints on the activity and interactions of ensembles of neurons have not been addressed. Here we aim to study the impact of constraining energy consumption during the resting-state on NMM parameters. To this end, we first linearized the model, then used stochastic control theory by introducing a quadratic cost function, which transforms the NMM into a stochastic linear quadratic regulator (LQR). Solving the LQR problem introduces a regime in which the NMM parameters, specifically the effective connectivities between neuronal populations, must vary with time. This is in contrast to current NMMs, which assume a constant parameter set for a given condition or task. We further simulated energy-constrained stochastic control of a specific NMM, the Wilson and Cowan model of two coupled neuronal populations, one of which is excitatory and the other inhibitory. These simulations demonstrate that with varying weights of the energy-cost function, the NMM parameters show different time-varying behavior. We conclude that constraining NMMs according to energy consumption may create more realistic models. We further propose to employ linear NMMs with time-varying parameters as an alternative to traditional nonlinear NMMs with constant parameters.  相似文献   

15.
Magnetic resonance imaging (MRI) has rapidly become an important tool in clinical medicine and biological research. Its functional variant (functional magnetic resonance imaging; fMRI) is currently the most widely used method for brain mapping and studying the neural basis of human cognition. While the method is widespread, there is insufficient knowledge of the physiological basis of the fMRI signal to interpret the data confidently with respect to neural activity. This paper reviews the basic principles of MRI and fMRI, and subsequently discusses in some detail the relationship between the blood-oxygen-level-dependent (BOLD) fMRI signal and the neural activity elicited during sensory stimulation. To examine this relationship, we conducted the first simultaneous intracortical recordings of neural signals and BOLD responses. Depending on the temporal characteristics of the stimulus, a moderate to strong correlation was found between the neural activity measured with microelectrodes and the BOLD signal averaged over a small area around the microelectrode tips. However, the BOLD signal had significantly higher variability than the neural activity, indicating that human fMRI combined with traditional statistical methods underestimates the reliability of the neuronal activity. To understand the relative contribution of several types of neuronal signals to the haemodynamic response, we compared local field potentials (LFPs), single- and multi-unit activity (MUA) with high spatio-temporal fMRI responses recorded simultaneously in monkey visual cortex. At recording sites characterized by transient responses, only the LFP signal was significantly correlated with the haemodynamic response. Furthermore, the LFPs had the largest magnitude signal and linear systems analysis showed that the LFPs were better than the MUAs at predicting the fMRI responses. These findings, together with an analysis of the neural signals, indicate that the BOLD signal primarily measures the input and processing of neuronal information within a region and not the output signal transmitted to other brain regions.  相似文献   

16.
Functional magnetic resonance imaging (fMRI) was used to assess the contributions of movement preparation and execution of a visuomotor task in a cerebral motor network. The functional connectivity of the voxel time series between brain regions in the frequency space was investigated by performing spectral analysis of fMRI time series. The regional interactivities between the two portions of the supplementary motor area (pre-SMA and SMA-proper) and the primary motor cortex (M1), defined as a seed region, were evaluated. The spectral parameter of coherence was used to describe a correlation structure in the frequency domain between two voxel-based time series and to infer the strength of the functional interaction within our presumed motor network of connections. The results showed meaningful differences of the functional interactions between the two portions of the SMA and the M1 area depending on the task conditions. This approach demonstrated the existence of a functional dissociation between the pre-SMA and SMA-proper subregions. We therefore conclude that spectral analysis is useful for identifying functional interactions of brain regions and might provide a powerful tool to quantify changes in connectivity profiles associated with various components of an experimental task.  相似文献   

17.
Schafer WR 《Neuron》2002,36(6):991-993
Cyclic GMP-dependent protein kinase (PKG) has been implicated in the regulation of diverse aspects of vertebrate and insect behavior, yet the mechanisms underlying these effects are poorly understood. In this issue of Neuron, Fujiwara et al. and L'Etoile et al. address the neural basis for PKG function in C. elegans and demonstrate the power of behavioral genetic analysis in simple systems in the elucidation of neuronal signaling mechanisms in vivo.  相似文献   

18.
19.

Background

Brain state classification has been accomplished using features such as voxel intensities, derived from functional magnetic resonance imaging (fMRI) data, as inputs to efficient classifiers such as support vector machines (SVM) and is based on the spatial localization model of brain function. With the advent of the connectionist model of brain function, features from brain networks may provide increased discriminatory power for brain state classification.

Methodology/Principal Findings

In this study, we introduce a novel framework where in both functional connectivity (FC) based on instantaneous temporal correlation and effective connectivity (EC) based on causal influence in brain networks are used as features in an SVM classifier. In order to derive those features, we adopt a novel approach recently introduced by us called correlation-purged Granger causality (CPGC) in order to obtain both FC and EC from fMRI data simultaneously without the instantaneous correlation contaminating Granger causality. In addition, statistical learning is accelerated and performance accuracy is enhanced by combining recursive cluster elimination (RCE) algorithm with the SVM classifier. We demonstrate the efficacy of the CPGC-based RCE-SVM approach using a specific instance of brain state classification exemplified by disease state prediction. Accordingly, we show that this approach is capable of predicting with 90.3% accuracy whether any given human subject was prenatally exposed to cocaine or not, even when no significant behavioral differences were found between exposed and healthy subjects.

Conclusions/Significance

The framework adopted in this work is quite general in nature with prenatal cocaine exposure being only an illustrative example of the power of this approach. In any brain state classification approach using neuroimaging data, including the directional connectivity information may prove to be a performance enhancer. When brain state classification is used for disease state prediction, our approach may aid the clinicians in performing more accurate diagnosis of diseases in situations where in non-neuroimaging biomarkers may be unable to perform differential diagnosis with certainty.  相似文献   

20.
Marrelec G  Fransson P 《PloS one》2011,6(4):e14788
In blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI), assessing functional connectivity between and within brain networks from datasets acquired during steady-state conditions has become increasingly common. However, in contrast to connectivity analyses based on task-evoked signal changes, selecting the optimal spatial location of the regions of interest (ROIs) whose timecourses will be extracted and used in subsequent analyses is not straightforward. Moreover, it is also unknown how different choices of the precise anatomical locations within given brain regions influence the estimates of functional connectivity under steady-state conditions. The objective of the present study was to assess the variability in estimates of functional connectivity induced by different anatomical choices of ROI locations for a given brain network. We here targeted the default mode network (DMN) sampled during both resting-state and a continuous verbal 2-back working memory task to compare four different methods to extract ROIs in terms of ROI features (spatial overlap, spatial functional heterogeneity), signal features (signal distribution, mean, variance, correlation) as well as strength of functional connectivity as a function of condition. We show that, while different ROI selection methods produced quantitatively different results, all tested ROI selection methods agreed on the final conclusion that functional connectivity within the DMN decreased during the continuous working memory task compared to rest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号