首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ranunculus flabellaris Raf., the yellow water crowfoot, exhibitsstriking heterophylly between submerged and terrestrial leaves.Leaves produced under water are highly divided with numerousnarrow lobes and deep sinuses, whereas terrestrial leaves havefew broad lobes and shallow sinuses. When plants are submergedin a 25 µM solution of ABA, the typical transition fromterrestrial to submerged leaves is completely suppressed and,instead, terrestrial-like leaves are produced. Image analysistechniques show that, in addition to this modification of leafmorphology, leaves produced under ABA treatment possess surfaceand internal features characteristic of terrestrial leaf anatomy.This study provides evidence that the environmental factorsthat influence the morphological and anatomical expression ofheterophylly may act through endogenous ABA. Ranunculus flabellaris, yellow water crowfoot, ABA, heterophylly, leaf anatomy  相似文献   

2.
Ranunculus flabellaris Rafin., an aquatic buttercup, exhibitsheterophylly at the level of cellular ultrastructure. Comparedto terrestrial leaves, underwater leaves have thinner epidermalcell walls and more numerous paramural bodies per epidermaland mesophyll cell cross-section. The number of chloroplastsand mitochondria in cell cross-sections also contrasts betweenthe two leaf types. Despite within-and between-leaf variations,different patterns of organelle distribution for the two leafforms were found using principal coordinates analysis. In addition,underwater leaf chloroplasts are smaller, have fewer grana,a greater number of thylakoids/granum, and less starch comparedto chloroplasts from terrestrial leaves. At the ultrastructurallevel, submergence in ABA solution does not produce a leaf withas many characteristics of the terrestrial environment, as shownin previous studies of leaf morphology and anatomy. While numberand distribution of organelles in ABA-treated leaves are similarto terrestrial leaves, some features of chloroplast internalstructure and paramural body number and distribution resembleunderwater leaves. It is postulated that ABA acts as a morphogeninvolved in guiding the irreversible processes of leaf development,but certain subcellular characteristics may be determined directlyby the physical environment. Difficulties encountered in quantitativeanalyses of cellular ultrastructure are discussed. Ranunculus flabellaris, ABA, heterophylly, leaf ultrastructure, principal coordinates analysis  相似文献   

3.
Root and Shoot Growth of Plants Treated with Abscisic Acid   总被引:4,自引:0,他引:4  
Young seedlings of Capsicum annum L., Commelina communis L.and maize (Zea mays L.) were subjected to a mild water-stressingtreatment and/or treated with abscisic acid (ABA). Plants rootedin soil received a soil-drying treatment and their leaves weresprayed with a 10–4 M solution of ABA. Plants grown insolution culture were stressed by the addition of polyethyleneglycol (PEG) to the rooting medium and ABA was also added tothe rooting medium, either with or without PEG. The effectsof both treatments on the growth of roots and shoots and theultimate root: shoot dry weight ratio were very similar. Shootgrowth was limited both by water stress and by ABA application;while there was some evidence that mild water stress and/orABA application may have resulted in a stimulation of root growth.More severe water stress reduced the growth of roots but theoverall effect of stress was to increase the ratio of rootsto shoots. Capsicum annum L., Commelina communis L., Zea mays L., water stress, abscisic acid  相似文献   

4.
In excised Avena leaves, depending on the duration of treatment,abscisic acid (10–5 M) had two distinctly different effectson the level of individual nucleases. In short-term experiments(3-h treatment, abscisic acid increased the level of a relativelypurine (guanine)-specific ribonuclease, in comparison with thewater control. Accumulation of the abscisie acid-induced ribonuclease,however, levelled off rapidly during incubation and the amountof the enzyme approached a plateau in about 6 h. As the accumulationof this ribonuclease became retarded, abscisic acid induceda striking increase in the level of another nuclease, an enzymenon-specific in relation to the sugar moiety but exhibitinga relative adenine specificity. This latter nuclease also wasshown to accumulate slowly in intact Avena leaves during ‘natural’senescence. The Avena leaves contain, in small concentrations,a chromatographic variant of the sugar non-specific nuclease.This minor variant, despite its identical enzymological properties,was found to be physiologically different from the main componentin that its concentration did not depend on the age of the tissuesand was not affected by abscisic acid.  相似文献   

5.
Age-related Changes in Stomatal Response to Cytokinins and Abscisic Acid   总被引:2,自引:0,他引:2  
Kinetin and zeatin(100 mmol m–3)reversald the ABA-mediated(100mmol m-2)closure of stomata of young maize leaves but did notaffect stomatal apertures of these leaves when applied alone.As leaves aged, kinetin or zeatin alone promoted increased stomatalapertures, while abscisic acid (ABA) applied alone had a reducedeffect on stomata. Even with older leaves, cytokinins reversadthe effect of ABA on stomata. Maize, stomata, abscisic acid, kineusc, zeatin, Zea mays  相似文献   

6.
The pleiotropic effects of three genetically related dwarfinggenes were investigated in near-isogenic lines of wheat. TheNORIN 10 semi-dwarfing alleles, Rht 1 and Rht 2, and the TomThumb allele, Rht 3, were assessed for effects on some vegetativemorphological and physiological characters. The Rht allelesaffected leaf size with a resultant decrease in leaf area ofthe whole plant. Rht 3, which had the most marked effects, reducedleaf area in young plants by as much as 30 per cent. Althoughflag leaf dimensions and stomatal distributions of the flagleaf were altered, the gene had no effect on its area, stomatalconductance or net CO2 exchange rate. Comparisons of Rht andtall plants revealed no differences in the abscisic acid (ABA)levels of either turgid or partially dehydrated leaves. Triticum aestivum L., wheat, dwarfing genes, leaf structure, abscisic acid, stomatal conductance, CO2, exchange, relative growth rate  相似文献   

7.
Borya nitida is an angiospcrm whose detached leaves developcomplete tolerance to dehydration when they are equilibratedto air of 96% r.h. This treatment causes leaves to yellow aschlorophyll is destroyed, and abscisic acid contents increaseseveral-fold. Exogenous ABA (at 0.038–0.38 mol m–3)promoted desiccation tolerance (a) in leaves undergoing toleranceinduction at 96% r.h., (b) only slightly during rapid dryingat rates which are normally injurious, and (c) considerablyin turgid tissue treated with ABA 48 h before rapid drying. ABA content also increased with intense water stress in Myrothamnusflabellifolia, a desiccation tolerant angiosperm which, unlikeBorya, retains most of its chlorophyll when dehydrated. Preliminaryincubation in ABA of detached leaves of this ‘resurrectionplant’ also promoted survival during rapid drying. Theability of ABA to substitute for the normal induction periodsuggests that this hormone participates in the development ofdesiccation tolerance. Key words: Abscisic acid, ABA, Drought tolerance, Resurrection plant  相似文献   

8.
Effects of Abscisic Acid on Growth of Wheat (Triticum aestivum L)   总被引:1,自引:0,他引:1  
HALL  H. K.; MCWHA  J. A. 《Annals of botany》1981,47(4):427-433
Daily application of abscisic acid (ABA) to growing wheat plants,although initially inhibiting growth, resulted, after a shortlag, in an increase in the number of leaves and tillers. Thismay have been due to reduced apical dominance. At 84 days thetotal dry weight and area of all leaves produced up to thistime was less for the plants treated with ABA than for the controlplants. However, the area of green, living leaves and the dryweight were not significantly affected by the ABA treatment.Further effects of the daily ABA treatment were the inhibitionof transpiration, especially on the abaxial surface, the reductionof leaf size, the promotion of flowering and the stimulationof trichome formation on the leaf surfaces. ABA did not promoteleaf senescence in whole plants and actually increased leaflongevity. Triticum aestivum L., wheat, leaf senescence, transpiration, growth, flowering, abscisic acid  相似文献   

9.
The influences of light of different wavelengths and plant growthregulators on the respiration of protoplasts isolated from tissue0 to 5 mm above the basal intercalary meristem of barley (Hordeumvulgare L. cv. Patty) leaves were studied. Respiration was measuredusing oxygen electrodes and a Cartesian-diver technique. Red,far-red and blue light all stimulated respiration in the protoplastsbut not in mitochondria isolated from them. Gibberellic acid stimulated respiration in protoplasts but abscisicacid had the opposite effect. Physiological concentrations ofindole-3-acetic acid and kinetin had no influence in eitherdirection. Combinations of gibberellic acid with light of anywavelength always increased respiration. Red or far-red light treatments in the presence of abscisicacid decreased dark respiration and only blue light significantlyreversed the inhibitory effect of abscisic acid. Cycloheximidemarkedly increased dark respiratory activity; chloramphenicolwas without effect. These results indicate that mitochondrialactivity in the leaf basal intercalary meristem was partiallycontrolled through phytochrome and a blue light receptor, andby gibberellic and abscisic acids. Changes in cytosolic proteinsynthesis were important for the initiation of enhanced mitochondrialactivity in meristems. Hordeum vulgare L., barley, abscisic acid, Cartesian-diver microrespirometry, gibberellic acid, meristematic respiration, protoplasts  相似文献   

10.
An unusual form of Ranunculus repens L. occurs in turlough basins(temporary lakes) in the West of Ireland. It is characterizedby more highly-dissected and glabrous leaves than the more typicalbroad-leaved form. Leaf dissection of both forms was quantifiedusing seed-derived plants which were cultivated in standardconditions. Leaves of both forms showed heteroblastic developmentand became increasingly dissected with each successively producedleaf until the adult leaf shape was attained around leaf 8.The dissection index of adult leaves was genetically based andhad a high heritability. Changes in leaf dissection were recordedacross a relatively deep, undulating turlough basin. The mostdissected leaf form was found deep within the basin among ahighly specialized species-poor community which was subjectedto the most prolonged period of inundation. An intermediate-leavedform occurred higher up the sides of the basin in a damp grasslandcommunity, where the period of inundation was more transient.A broad-leaved form occurred around the upper fringes of thebasin among a dry pastureland community. The intermediate-leavedform may have resulted from gene flow between the broad- anddissected-leaved populations, or may have evolved a distinctleaf shape adapted to the prevailing conditions at that pointwithin the basin. Copyright 2001 Annals of Botany Company Ranunculus repens L., turloughs, leaf shape, heritability, ontogeny, population biology  相似文献   

11.
Yellow prisms of asparagusic acid, with a molecular formulaof C4H6O2S2 were isolated from etiolated asparagus tissues (Asparagusofficinalis L.). This acid inhibits growth in lettuce and otherseedlings when applied in concentrations of 6.67x10–7Mto 6.67xl0–7M. The extent of activity was very similarto that of abscisic acid. 1 A well known shift reagent in the NMR spectrum (1). (Received April 12, 1972; )  相似文献   

12.
Petioles of the celery-leaved buttercup (Ranunculus sceleratusL.) elongate in response to treatment with ethylene in air whenthe leaf blades are attached. An enhanced rate of elongationgrowth also occurs when the leaves are submerged. Submergencecauses an increase in extractable ethylene gas within the tissues,and these levels appear to approach those required to saturatethe ethylene-promoted elongation growth response. Coincidentwith a rise in ethylene in the tissues is a dramatic increasein the level of I-aminocyclopropane-1-carboxylic acid (ACC),the precursor of ethylene. Both the petiole and leaf blade tissueshave a similar capacity to evolve ethylene in the presence ofadded ACC. However, in air the leaf blade evolves more ethylenefrom endogenous resources than the petiole. The simultaneousincreases in ethylene and ACC levels in submerged tissues areconsidered in terms of the low diffusivity of ethylene in water,the ‘autocatalytic’ effect of ethylene on ethylenebiosynthesis and the rôle of both carbon dioxide and oxygenfluxes in ethylene metabolism of submerged tissues. Ranunculus sceleratus, celery-leaved buttercup, petiole growth, submergence, ethylene metabolism  相似文献   

13.
Neill, S. J., McGaw, B. A. and Horgan, R. 1986. Ethylene and1-aminocyclopropane-l-carboxylic acid production in flacca,a wilty mutant of tomato, subjected to water deficiency andpretreatment with abscisic acid —J. exp. Bot. 37: 535–541. Plants of Lycoperstcon esculentum Mill. cv. Ailsa Craig wildtype and flacca (flc) were sprayed daily with H2O or 2?10–2mol m–3 abscisic acid (ABA). ABA treatment effected apartial phenotypic reversion of flc shoots; leaf areas wereincreased and transpiration rates decreased. Leaf expansionof wild type shoots was inhibited by ABA. Indoleacetic acid (IAA), ABA and l-aminocyclopropane-l-carboxylicacid (ACC) concentrations were determined by combined gas chromatography-massspectrometry using deuterium-labelled internal standards ABAtreatment for 30 d resulted in greatly elevated internal ABAlevels, increasing from 1?0 to 4?3 and from 0?45 to 4?9 nmolg–1 fr. wt. in wild type and flc leaves respectively.Endogenous IAA and ACC concentrations were much lower than thoseof ABA. IAA content ranged from 0?05 to 0?1 nmol g–1 andACC content from 0?07 to 0?24 nmol g–1 Ethylene emanationrates were similar for wild type and flc shoots. Wilting of detached leaves induced a substantial increase inethylene and ACC accumulation in all plants, regardless of treatmentor type. Ethylene and ACC levels were no greater in flc leavescompared to the wild type. ABA pretreatment did not preventthe wilting-induced increase in ACC and ethylene synthesis. Key words: ABA, ACC, ethylene, wilting, wilty mutants  相似文献   

14.
The movement of foliar applied [1-14C]abscisic acid (ABA) inwheat plants (Triticum aestivum L., cv. Kolibri) was investigatedat two stages of grain development (1000 grains, weight 19 and24 g dry matter). [1–14C]ABA seemed to be readily translocated within 12h into the developing grains as well as in other plant parts.A subsequent rapid metabolism took place leading to a decreasedactivity of the ABA-containing chromatogram fraction in theyounger plants 48 h after application. The metabolism seemodto be less intensive in the older grains, where the activityrunning with the ABA increased over 64 h. Treating the leaves of barley plants (Hordeum vulgare, L., cv.Union) 2 weeks after anthesis with a gentle stream of warm air(36° C) resulted in a significant increase in the ABA contentof all parts of the ear. The results mentioned above indicatethat this may be partially due to translocation from other partsof the plant such as the leaves.  相似文献   

15.
Leaf surfaces of seven genotypes of Sorghum bicolor, two ofmaize, Zea mays, and two pearl millet, Pennisetum americanum,were examined by scanning electron microscopy for possible morphologicaldifferences. Leaves 1, 3, 5 and 7 were photographed and printswere used to estimate waxiness, hairiness or pubescence andstomatal density. Glossiness was determined by spraying water,which adhered to the glossy leaves. Cuticular transpirationof detached third and fifth leaves was estimated from the rateof water loss after abscisic acid induced stomatal closure.Sorghum lines SC283, CSM63, CSM90, and pearl millets Souna andTiotioni (all from Mali), were non-glossy, well covered withwax, and exhibited variable hairiness. Older leaves of sorghumvarieties Martin and Redlan were glossy and, like older leavesof the other glossy lines SC1096 and SC90, had little or nowax deposits on their cuticles. The two maize cultivars, NB611and N7A, were non-glossy with dense wax covering; no trichomeswere observed until the 5 to 7 leaf stage. Thus, the glossycharacter was correlated with the reduction or absence of waxdeposits on the leaf surfaces, while hairiness might occur ineither glossy or non-glossy genotypes. Unlike sorghum and maize,in which all leaves after the fifth or seventh were glossy,pearl millet showed no glossiness through the ninth leaf. Measurementsshowed that cuticular transpiration of glossy leaves was oftenmore than double that of non-glossy leaves. Comparisons amongsorghums showed that non-glossy lines had higher stomatal densitiesthan glossy lines. Epicuticular wax, trichome, glossy mutant, stomata, cuticular transpiration, Sorghum bicolor, (L.) Moench, Zea mays L., Pennisetum americanum, (L.) Leeke  相似文献   

16.
Yeo, A. R., Yeo, M. E., Caporn, S. J. M., Lachno, D. R. andFlowers, T. J. 1985. The use of 14C-ethane diol as a quantitativetracer for the transpirational volume flow of water and an investigationof the effects of salinity upon transpiration, net sodium accumulationand endogenous ABA in individual leaves of Oryza sativa L.—J.exp. Bot. 36: 1099–1109. Oryza sativa L. (rice) seedlings growing in saline conditionsexhibit pronounced gradients in leaf sodium concentration whichis always higher in the older leaves than the younger ones.Individual leaf transpiration rates have been investigated todiscover whether movement of sodium in the transpiration streamis able to explain these profiles from leaf to leaf. The useof 14C labelled ethane diol to estimate transpiration was evaluatedby direct comparison with values obtained by gas exchange measurements.Ethane diol uptake was linearly related to the transpirationalvolume flow and accurately predicted leaf to leaf gradientsin transpiration rate in saline and non-saline conditions. 14C-ethanediol and 22NaCl were used to compare the fluxes of water andsodium into different leaves. The youngest leaf showed the highesttranspiration rate but the lowest Na accumulation in salineconditions; conversely, the older leaves showed the lower transpirationrates but the greater accumulation of Na. The apparent concentrationof Na in the xylem stream was 44 times lower into the youngerleaf 4 than into the older leaf 1. Exposure to NaCl (50 molm–3) for 24 h elicited an increase in endogenous ABA inthe oldest leaf only, but no significant changes occurred inthe younger leaves. Key words: —Salinity, rice, Oryza sativa L., transpiration, volume flow, abscisic acid  相似文献   

17.
The R- and S-enantiomers of racemic [2-14C]Me 1', 4'-cis-diolof abscisic acid have been separated by high performance liquidchromatography on an optically-active Pirkle column. R-[2-14C]-and S-[2-14C]abscisic acids, formed from the Me 1', 4'-cis-diolby oxidation and alkyline hydrolysis were fed to tomato shootsand the extracts analysed by reversed phase high performanceliquid chromatography. R-[2-14C]abscisic acid formed mainlythe abscisic acid glucose ester (ABAGE), abscisic acid l'-glucoside(ABAGS) and an uncharacterized conjugate. Dihydrophaseic acid4'-B-D-glucoside, the major metabolite of RS-abscisic acid intomato shoots, was found to be derived virtually exclusivelyfrom the natural, S-abscisic acid. Phaseic acid and conjugatesof abscisic acid were also found as products of the naturallyoccurring enantiomer. The resolution method was used to measurethe relative proportions of R and S enantiomers in the freeacid liberated from conjugates formed from RS-[2-14C]ABA fedto shoots. The ratios show an excess of the R-enantiomer: 5.8:1, ABAGE; 29.4: 1, ABAGE; 8.3: 1 for an uncharacterized conjugateand 6.1: 1 for the residual free [2-14C]ABA. Key words: ABA, HPLC, Tomato  相似文献   

18.
In previous studies (Houssa et al., 1990, 1994) we observedthat cytokinins stimulate the cell division process in vegetativeand reproductive shoot meristems of monocotyledonous and dicotyledonousspecies by activating latent DNA-replication origins. Here wereport that abscisic acid antagonizes this effect in the shootmeristem of Sinapis alba L. Abscisic acid reduces DNA synthesisby inactivating some DNA-replication origins resulting in alengthening of the replicon size. It is hypothesized that thebalance between abscisic acid and cytokinin levels is one ofthe major factors controlling the rate of DNA replication, andultimately the rate of cell division, in shoot meristems. Key words: Abscisic acid, cell division, cytokinin, DNA replication, replicon, shoot meristem, Sinapis alba  相似文献   

19.
20.
Suppression of Stomatal Opening in Leaves Treated with Abscisic Acid   总被引:14,自引:1,他引:13  
Small doses of abscisic acid (approximately 0.02 µg cm-2of leaf) applied to the leaf surface as a 10-4 M solution causedmarked stomatal closure in Xanthium pennsylvanicum, and theeffect persisted for up to 9 days after application. Similareffects were found when 10-4 M abscisic acid was supplied todetached tobacco leaves via their petioles. CO2-free air didnot cause a reversal of the closure, and it was therefore concludedthat the effect was not due simply to an increase in the intercellularCO2concentration; a more direct effect on the stomatal apparatusis suggested. It is considered that abscisic acid could playan endogenous role in the control of stomatal aperture, andthat this, and/or related substances, might be more useful as‘anti-transpirants’ than the phytotoxic substancescurrently employed for this purpose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号