首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
朱宝利  佟卉春  陈伟  东秀珠 《微生物学报》2009,49(10):1341-1346
摘要:【目的】寡发酵链球菌(Streptococcus oligofermentans)是从无龋人的口腔中分离到的一株链球菌,好氧条件下产生、同时也耐受高浓度(4.4 mmol/L)的过氧化氢。本研究探讨dpr基因对寡发酵链球菌抗过氧化氢的贡献。【方法】克隆和表达寡发酵链球菌dpr基因,分析Dpr蛋白的功能;构建寡发酵链球菌的dpr基因突变株,比较野生株和突变株对不同浓度过氧化氢的耐受程度;并将寡发酵链球菌dpr基因克隆到对过氧化氢耐受力低的变形链球菌中,分析其对变形链球菌过氧化氢耐受能力的影响。【结果】  相似文献   

2.
We have previously identified and characterized the alkyl hydroperoxide reductase of Streptococcus mutans, which consists of two components, Nox-1 and AhpC. Deletion of both nox-1 and ahpC had no effect on the sensitivity of S. mutans to cumene hydroperoxide or H(2)O(2), implying that the existence of another antioxidant system(s) independent of the Nox-1-AhpC system compensates for the deficiency. Here, a new antioxidant gene (dpr for Dps-like peroxide resistance gene) was isolated from the S. mutans chromosome by its ability to complement an ahpCF deletion mutant of Escherichia coli with a tert-butyl hydroperoxide-hypersensitive phenotype. The dpr gene complemented the defect in peroxidase activity caused by the deletion of nox-1 and ahpC in S. mutans. Under aerobic conditions, the dpr disruption mutant carrying a spectinomycin resistance gene (dpr::Spc(r) mutant) grew as well as wild-type S. mutans in liquid medium. However, the dpr::Spc(r) mutant could not form colonies on an agar plate under air. In addition, neither the dpr::Spc(r) ahpC::Em(r)::nox-1 triple mutant nor the dpr::Spc(r) sod::Em(r) double mutant was able to grow aerobically in liquid medium. The 20-kDa dpr gene product Dpr is an iron-binding protein. Synthesis of Dpr was induced by exposure of S. mutans cells to air. We propose a mechanism by which Dpr confers aerotolerance on S. mutans.  相似文献   

3.
Dpr is an iron-binding protein required for oxygen tolerance in Streptococcus mutans. We previously proposed that Dpr could confer oxygen tolerance to the bacterium by sequestering intracellular free iron ions that catalyze generation of highly toxic radicals (Y. Yamamoto, M. Higuchi, L. B. Poole, and Y. Kamio, J. Bacteriol. 182:3740-3747, 2000; Y. Yamamoto, L. B. Poole, R. R. Hantgan, and Y. Kamio, J. Bacteriol. 184:2931-2939, 2002). Here, we examined the intracellular free iron status of wild-type (WT) and dpr mutant strains of S. mutans, before and after exposure to air, by using electron spin resonance spectrometry. Under anaerobic conditions, free iron ion concentrations of WT and dpr strains were 225.9 +/- 2.6 and 333.0 +/- 61.3 microM, respectively. Exposure of WT cells to air for 1 h induced Dpr expression and reduced intracellular free iron ion concentrations to 22.5 +/- 5.3 microM; under these conditions, dpr mutant cells maintained intracellular iron concentration at 230.3 +/- 28.8 microM. A decrease in cell viability and genomic DNA degradation was observed in the dpr mutant exposed to air. These data indicate that regulation of the intracellular free iron pool by Dpr is required for oxygen tolerance in S. mutans.  相似文献   

4.
Streptococcus suis Dpr is an iron-binding protein involved in oxidative stress resistance. It belongs to the bacterial Dps protein family whose members form dodecameric assemblies. Previous studies have shown that zinc and terbium inhibit iron incorporation in Listeria innocua Dps protein. In order to gain structural insights into the inhibitory effect of zinc and terbium, the crystal structures of Streptococcus suis Dpr complexes with these ions were determined at 1.8 A and 2.1 A, respectively. Both ions were found to bind at the ferroxidase center and in the same location as iron. In addition, a novel zinc-binding site formed by His40 and His44 was identified. Both His residues were found to be present within all known Streptococcus suis Dpr variants and in Streptococcus pneumoniae, Streptococcus gordonii, and Streptococcus sanguinis Dpr proteins. Amino acid sequence alignment of Dpr with other Dps family members revealed that His44 is highly conserved, in contrast to His40. The inhibitory effect of zinc and terbium on iron oxidation in Dpr was studied in vitro, and it was found that both ions at concentrations >0.2 mM almost completely abolish iron binding. These results provide a structural basis for the inhibitory effect of zinc and terbium in the Dps family of proteins, and suggest a potential role of the Dps proteins in zinc detoxification mechanisms involving the second zinc-binding site.  相似文献   

5.
The Dps family members constitute a distinct group of multimeric and ferritin-like iron binding proteins (up to 500 iron atoms/12-mer) that are widespread in eubacteria and archaea and implicated in oxidative stress resistance and virulence. Despite the wealth of structural knowledge, the mechanism of iron incorporation has remained elusive. Here, we provide evidence on Dpr of the swine and human pathogen Streptococcus suis that: (i) iron incorporation proceeds by Fe(II) binding, Fe(II) oxidation and subsequent storage as Fe(III); (ii) Fe(II) atoms enter the 12-mer cavity through four hydrophilic pores; and (iii) Fe(II) atoms are oxidized inside the 12-mer cavity at 12 identical inter-subunit sites, which are structurally different but functionally equivalent to the ferroxidase centres of classical ferritins. We also provide evidence, by deleting and ectopically overexpressing Dpr, that Dpr affects cellular iron homeostasis. The key residues responsible for iron incorporation in S. suis Dpr are well conserved throughout the Dps family. A model for the iron incorporation mechanism of the Dps/Dpr ferritin-like protein is proposed.  相似文献   

6.
We identified and characterized the iron-binding protein Dps from Campylobacter jejuni. Electron microscopic analysis of this protein revealed a spherical structure of 8.5 nm in diameter, with an electron-dense core similar to those of other proteins of the Dps (DNA-binding protein from starved cells) family. Cloning and sequencing of the Dps-encoding gene (dps) revealed that a 450-bp open reading frame (ORF) encoded a protein of 150 amino acids with a calculated molecular mass of 17,332 Da. Amino acid sequence comparison indicated a high similarity between C. jejuni Dps and other Dps family proteins. In C. jejuni Dps, there are iron-binding motifs, as reported in other Dps family proteins. C. jejuni Dps bound up to 40 atoms of iron per monomer, whereas it did not appear to bind DNA. An isogenic dps-deficient mutant was more vulnerable to hydrogen peroxide than its parental strain, as judged by growth inhibition tests. The iron chelator Desferal restored the resistance of the Dps-deficient mutant to hydrogen peroxide, suggesting that this iron-binding protein prevented generation of hydroxyl radicals via the Fenton reaction. Dps was constitutively expressed during both exponential and stationary phase, and no induction was observed when the cells were exposed to H(2)O(2) or grown under iron-supplemented or iron-restricted conditions. On the basis of these data, we propose that this iron-binding protein in C. jejuni plays an important role in protection against hydrogen peroxide stress by sequestering intracellular free iron and is expressed constitutively to cope with the harmful effect of hydrogen peroxide stress on this microaerophilic organism without delay.  相似文献   

7.
The type strain of Streptococcus suis was investigated for features that might help the organism to tolerate the H2O2 that is produced during growth. Enzyme assays, using soluble extracts, revealed that the type strain, which lacks catalase, lacks NADH peroxidase in both the mid-exponential and stationary phases of the growth cycle. Although iron could not be detected colourimetrically in dense cell suspensions, determination of the cellular iron content following growth to early stationary phase in the presence of 55FeCl3 demonstrated that S. suis does contain iron and hence is incapable of iron exclusion. Gene amplification, using oligonucleotide primers based on dpr of Streptococcus mutans, followed by nucleotide sequencing, revealed in S. suis, the presence of a gene that encodes a Dpr homologue. It is concluded that in S. suis, tolerance of H2O2 is due to iron sequestration by Dpr and the consequent effect of this process on the extent of Fenton chemistry.  相似文献   

8.
Dps proteins contain a ferroxidase site that binds and oxidizes iron, thereby preventing hydroxyl radical formation by Fenton reaction. Although the involvement of a di-iron ferroxidase site has been suggested, X-ray crystal structures of various Dps members have shown either one or two iron cations with various occupancies despite the high structural conservation of the site. Similarly, structural studies with zinc, a redox-stable replacement for iron, have shown the binding of either one or two zinc ions. Here, the crystal structure of Streptococcus pyogenes Dpr in complex with zinc reveals the binding of two zinc cations in the ferroxidase center and an additional zinc-binding site at the surface of the protein. The results suggest a structural basis for the protection of Streptococcus pyogenes in zinc stress conditions and provide a clear evidence for a di-zinc and di-iron ferroxidase site in Streptococcus pyogenes Dpr protein.  相似文献   

9.
Alkyl hydroperoxide reductase in Streptococcus mutans consists of two components, Nox-1 and AhpC. Deletion of nox-1 and ahpC in a double mutant as well as the wild-type of Streptococcus mutans can form colonies in the presence of air to the same extent. The evidence suggested the presence of some other antioxidant system(s) independent of the Nox-1/AhpC system in the bacterium. Here we identified a new antioxidant gene (dpr) and the gene product (Dpr) which complements the defect of peroxidase activity caused by the deletion of nox-1 and ahpC in S. mutans. The dpr-disruption mutant of S. mutans could form colonies anaerobically but not aerobically.  相似文献   

10.
The Dps-like peroxide resistance protein (Dpr) is an aerotolerance and hydrogen peroxide resistance agent found in the meningitis-associated pathogen Streptococcus suis. Dpr is believed to act by binding free intracellular iron to prevent Fenton chemistry-catalysed formation of toxic hydroxyl radicals. The crystal structure of Dpr has been determined to 1.95 A resolution. The final model has an Rcyst value of 18.5% (Rfree = 22.4%) and consists of 12 identical monomers (each of them comprising a four alpha-helix bundle) that form a hollow sphere obeying 23 symmetry. Structural features show that Dpr belongs to the Dps family of bacterial proteins. Twelve putative ferroxidase centers, each formed at the interface of neighboring monomer pairs, were identified in the Dpr structure with structural similarities to those found in other Dps family members. Dpr was crystallized in the absence of iron, hence no bound iron was found in the structure in contrast to other Dps family members. A novel metal-binding site approximately 6A from the ferroxidase centre was identified and assigned to a bound calcium ion. Two residues from the ferroxidase centre (Asp63 and Asp74) were found to be involved in calcium binding. Structural comparison with other family members revealed that Asp63 and Asp74 adopt different conformation in the Dpr structure. The structure of Dpr presented here shows potential local conformational changes that may occur during iron incorporation. A role for the metal-binding site in iron uptake is proposed.  相似文献   

11.
DNA-binding protein from starved cells (Dps)-like proteins are key factors involved in oxidative stress protection in bacteria. They bind and oxidize iron, thus preventing the formation of harmful reactive oxygen species that can damage biomolecules, particularly DNA. Dps-like proteins are composed of 12 identical subunits assembled in a spherical structure with a hollow central cavity. The iron oxidation occurs at 12 intersubunit sites located at dimer interfaces. Streptococcus pyogenes Dps-like peroxide resistance protein (Dpr) has been previously found to protect the catalase-lacking S. pyogenes bacterium from oxidative stress. We have determined the crystal structure of S. pyogenes Dpr, the second Dpr structure from a streptococcal bacterium, in iron-free and iron-bound forms at 2.0- and 1.93-Å resolution, respectively. The iron binds to well-conserved sites at dimer interfaces and is coordinated directly to Asp77 and Glu81 from one monomer, His50 from a twofold symmetry-related monomer, a glycerol molecule, and a water molecule. Upon iron binding, Asp77 and Glu81 change conformation. Site-directed mutagenesis of active-site residues His50, His62, Asp66, Asp77, and Glu81 to Ala revealed a dramatic decrease in iron incorporation. A short helix at the N-terminal was found in a different position compared with other Dps-like proteins. Two types of pores were identified in the dodecamer. Although the N-terminal pore was found to be similar to that of other Dps-like proteins, the C-terminal pore was found to be blocked by bulky Tyr residues instead of small residues present in other Dps-like proteins.  相似文献   

12.
Dps(DNAprotection during starvation)蛋白是原核生物中特有的一类具有铁离子结合和抗氧化损伤功能的重要蛋白。利用体外PCR扩增技术和体内同源重组方法,获得了耐辐射奇球菌(Deinococcus radiodurans)dps全基因(DRB0092)缺失突变株。对突变株和野生型分别进行不同浓度过氧化氢(H2O2)处理,结果表明:与野生型菌株R1相比,dps突变株在低浓度H2O2(≤10mmol/L)条件下存活率急剧下降,而高浓度(≥30mmol/L)下则完全致死。Native-PAGE活性染色结果显示,稳定生长期dps突变株体内两种过氧化氢酶(KatA和KatB)的活性较野生型R1分别上调2.3倍和2.6倍。通过质粒构建和大肠杆菌诱导表达,获得可溶性Dps蛋白。体外结合和DNA保护实验结果显示:Dps具有明显的DNA结合功能,并能保护质粒DNA免受羟自由基攻击。本研究证明,Dps蛋白在耐辐射奇球菌抗氧化体系中发挥重要作用,可能对该菌极端抗性机制有重要贡献。  相似文献   

13.
The presence of an iron-binding protein in the hemolymph of the blue crab (Callinectes sapidus) was detected by gel filtration of 59Fe-labeled hemolymph. The iron-binding protein was purified to homogeneity by ion exchange chromatography. 2. This protein has a mol. wt of 155,000 and consists of a single polypeptide chain with an isoelectric point of 5.0. 3. Analysis of the iron-loaded protein indicates that it has a high affinity for iron and the capacity to bind approximately 10 atoms iron/molecule protein. 4. The isolation of a specific iron-binding protein from the blue crab (Callinectes sapidus) provides additional support for the proposal that such proteins are an ancient evolutionary development not necessarily linked to the appearance of iron proteins (hemoglobin and hemerythrin) as a means for oxygen transport.  相似文献   

14.
H(2)O(2) is an unavoidable cytotoxic by-product of aerobic life. Dpr, a recently discovered member of the Dps protein family, provides a means for catalase-negative bacteria to tolerate H(2)O(2). Potentially, Dpr could bind free intracellular iron and thus inhibit the Fenton chemistry-catalyzed formation of toxic hydroxyl radicals (H(2)O(2) + Fe(2+) --> (.)OH + (-)OH + Fe(3+)). We explored the in vivo function of Dpr in the catalase- and NADH peroxidase-negative pig and human pathogen Streptococcus suis. We show that: (i) a Dpr allelic exchange knockout mutant was hypersensitive ( approximately 10(6)-fold) to H(2)O(2), (ii) Dpr incorporated iron in vivo, (iii) a putative ferroxidase center was present in Dpr, (iv) single amino acid substitutions D74A or E78A to the putative ferroxidase center abolished the in vivo iron incorporation, and (v) the H(2)O(2) hypersensitive phenotype was complemented by wild-type Dpr or by a membrane-permeating iron chelator, but not by the site-mutated forms of Dpr. These results demonstrate that the putative ferroxidase center of Dpr is functionally active in iron incorporation and that the H(2)O(2) resistance is mediated by Dpr in vivo by its iron binding activity.  相似文献   

15.
Although the role of iron in marine productivity has received a great deal of attention, no iron storage protein has been isolated from a marine microorganism previously. We describe an Fe-binding protein belonging to the Dps family (DNA binding protein from starved cells) in the N(2)-fixing marine cyanobacterium Trichodesmium erythraeum. A dps gene encoding a protein with significant levels of identity to members of the Dps family was identified in the genome of T. erythraeum. This gene codes for a putative Dps(T. erythraeurm) protein (Dps(tery)) with 69% primary amino acid sequence similarity to Synechococcus DpsA. We expressed and purified Dps(tery), and we found that Dps(tery), like other Dps proteins, is able to bind Fe and DNA and protect DNA from degradation by DNase. We also found that Dps(tery) binds phosphate, like other ferritin family proteins. Fe K near-edge X-ray absorption of Dps(tery) indicated that it has an iron core that resembles that of horse spleen ferritin.  相似文献   

16.
Fuscoredoxin is a unique iron containing protein of yet unknown function originally discovered in the sulfate reducers of the genus Desulfovibrio. It contains two iron-sulfur clusters: a cubane [4Fe-4S] and a mixed oxo- and sulfido-bridged 4Fe cluster of unprecedented structure. The recent determination of the genomic sequence of Escherichia coli (E. coli) has revealed a homologue of fuscoredoxin in this facultative microbe. The presence of this gene in E. coli raises interesting questions regarding the function of fuscoredoxin and whether this gene represents a structural homologue of the better-characterized Desulfovibrio proteins. In order to explore the latter, an overexpression system for the E. coli fuscoredoxin gene was devised. The gene was cloned from genomic DNA by use of the polymerase chain reaction into the expression vector pT7-7 and overexpressed in E. coli BL21(DE3) cells. After two chromatographic steps a good yield of recombinant protein was obtained (approximately 4 mg of pure protein per liter of culture). The purified protein exhibits an optical spectrum characteristic of the homologue from D. desulfuricans, indicating that cofactor assembly was accomplished. Iron analysis indicated that the protein contains circa 8 iron atoms/molecule which were shown by EPR and M?ssbauer spectroscopies to be present as two multinuclear clusters, albeit with slightly altered spectroscopic features. A comparison of the primary sequences of fuscoredoxins is presented and differences on cluster coordination modes are discussed on the light of the spectroscopic data.  相似文献   

17.
The presence of an iron-binding protein in the haemolymph of the horseshoe crab, Limulus polyphemus, was detected by gel filtration of 59Fe-labelled haemolymph. Lysis of amoebocytes did not change the amount of iron-binding protein in haemolymph samples. The protein was purified to homogeneity by ion-exchange chromatography. The molecular mass of the purified protein was estimated to be 282,000 +/- 10,000 Da by gel filtration and analytical ultracentrifugation. SDS/polyacrylamide-gel electrophoresis demonstrated that the protein is composed of ten subunits having a molecular mass of 28,000 +/- 2,000 Da. The purified, unlabelled protein efficiently sequestered 59Fe in the absence of haemolymph indicating that no other haemolymph factors are required for the incorporation of iron into the protein. No 59Fe was removed from the purified protein with EDTA or 2,2'-bipyridyl. Partial removal of 59Fe was achieved by dialysis with nitrilotriacetic acid or desferal. Analysis of the iron-loaded protein indicated that each subunit has the capacity to bind two iron atoms with high affinity. The isolation of an iron-binding protein from L. polyphemus supports the proposal that such proteins are an ancient evolutionary development not necessarily linked to the appearance of iron proteins which serve as oxygen carriers.  相似文献   

18.
Short-time iodination of metal-free ovotransferrin indicated that the tyrosine groups involved in the iron-binding activity are indistinguishable from other structural tyrosines. Modification of a minimum of 14 tyrosine residues per molecule of protein was required to achieve a complete loss of metal-binding activity. In contrast, a maximum modification of 10 tyrosine residues in iron-ovotransferrin complex could be produced with no loss of iron-binding activity. The difference in the extent of modification of tyrosines, therefore, indicated the involvement of four tyrosines in the binding of two atoms of iron. A minimal modification of histidine residues was also found, which was limited to one residue per molecule of both ovotransferrin and its iron complex. The possible participation of two tryptophan residues in the iron-binding activity is also suggested in the present study.  相似文献   

19.
Multifunctional protein Dps plays an important role in iron assimilation and a crucial role in bacterial genome packaging. Its monomers form dodecameric spherical particles accumulating ~400 molecules of oxidized iron ions within the protein cavity and applying a flexible N-terminal ends of each subunit for interaction with DNA. Deposition of iron is a well-studied process by which cells remove toxic Fe2+ ions from the genetic material and store them in an easily accessible form. However, the mode of interaction with linear DNA remained mysterious and binary complexes with Dps have not been characterized so far. It is widely believed that Dps binds DNA without any sequence or structural preferences but several lines of evidence have demonstrated its ability to differentiate gene expression, which assumes certain specificity. Here we show that Dps has a different affinity for the two DNA fragments taken from the dps gene regulatory region. We found by atomic force microscopy that Dps predominantly occupies thermodynamically unstable ends of linear double-stranded DNA fragments and has high affinity to the central part of the branched DNA molecule self-assembled from three single-stranded oligonucleotides. It was proposed that Dps prefers binding to those regions in DNA that provide more contact pads for the triad of its DNA-binding bundle associated with one vertex of the protein globule. To our knowledge, this is the first study revealed the nucleoid protein with an affinity to branched DNA typical for genomic regions with direct and inverted repeats. As a ubiquitous feature of bacterial and eukaryotic genomes, such structural elements should be of particular care, but the protein system evolutionarily adapted for this function is not yet known, and we suggest Dps as a putative component of this system.  相似文献   

20.
The use of protein cages for the creation of novel inorganic nanomaterials has attracted considerable attention in recent years. Ferritins are among the most commonly used protein cages in nanoscience. Accordingly, the binding of various metals to ferritins has been studied extensively. Dps (DNA-binding protein from starved cells)-like proteins belong to the ferritin superfamily. In contrast to ferritins, Dps-like proteins form 12-mers instead of 24-mers, have a different ferroxidase center, and are able to store a smaller amount of iron atoms in a hollow cavity (up to ∼ 500, instead of the ∼ 4500 iron atoms found in ferritins). With the exception of iron, the binding of other metal cations to Dps proteins has not been studied in detail. Here, the binding of six divalent metal ions (Zn2+, Mn2+, Ni2+, Co2+, Cu2+, and Mg2+) to Streptococcus suisDps-like peroxide resistance protein (SsDpr) was characterized by X-ray crystallography and isothermal titration calorimetry (ITC). All metal cations, except for Mg2+, were found to bind to the ferroxidase center similarly to Fe2+, with moderate affinity (binding constants between 0.1 × 105 M− 1 and 5 × 105 M− 1). The stoichiometry of binding, as deduced by ITC data, suggested the presence of a dication ferroxidase site. No other metal binding sites were identified in the protein. The results presented here demonstrate the ability of SsDpr to bind various metals as substitutes for iron and will help in better understanding protein-metal interactions in the Dps family of proteins as potential metal nanocontainers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号