首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yu SM  Kim SJ 《BMB reports》2012,45(5):317-322
2-deoxy-D-glucose(2DG)-caused endoplasmic reticulum (ER) stress inhibits protein phosphorylation at tyrosine residues. However, the accurate regulatory mechanisms, which determine the inflammatory response of chondrocytes to ER stress via protein tyrosine phosphorylation, have not been systematically evaluated. Thus, in this study, we examined whether protein phosphorylation at tyrosine residues can modulate the expression and glycosylation of COX-2, which is reduced by 2DG-induced ER stress. We observed that protein tyrosine phosphatase (PTP) inhibitors, sodium orthovanadate (SOV), and phenylarsine oxide (PAO) significantly decreased expression of ER stress inducible proteins, glucose-regulated protein 94 (GRP94), and CCAAT/enhancer-binding-protein- related gene (GADD153), which was induced by 2DG. In addition, we demonstrated that SOV and PAO noticeably restored the expression and glycosylation of COX-2 after treatment with 2DG. These results suggest that protein phosphorylation of tyrosine residues plays an important role in the regulation of expression and glycosylation during 2DG-induced ER stress in rabbit articular chondrocytes.  相似文献   

2.
Hypothermic perfusion of the heart decreases oxidative phosphorylation and increases NADH. Because O(2) and substrates remain available and respiration (electron transport system, ETS) may become impaired, we examined whether reactive oxygen species (ROS) exist in excess during hypothermic perfusion. A fiberoptic probe was placed on the left ventricular free wall of isolated guinea pig hearts to record intracellular ROS, principally superoxide (O(2)(-).), and an extracellular reactive nitrogen reactant, principally peroxynitrite (ONOO(-)), a product of nitric oxide (NO.) + O(2)(-). Hearts were loaded with dihydroethidium (DHE), which is oxidized by O(2)(-). to ethidium, or were perfused with l-tyrosine, which is oxidized by ONOO(-) to dityrosine (diTyr). Shifts in fluorescence were measured online; diTyr fluorescence was also measured in the coronary effluent. To validate our methods and to examine the source and identity of ROS during cold perfusion, we examined the effects of a superoxide dismutase mimetic Mn(III) tetrakis(4-benzoic acid)porphyrin chloride (MnTBAP), the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME), and several agents that impair electron flux through the ETS: menadione, sodium azide (NaN(3)), and 2,3-butanedione monoxime (BDM). Drugs were given before or during cold perfusion. ROS measured by DHE was inversely proportional to the temperature between 37 degrees C and 3 degrees C. We found that perfusion at 17 degrees C increased DHE threefold versus perfusion at 37 degrees C; this was reversed by MnTBAP, but not by l-NAME or BDM, and was markedly augmented by menadione and NaN(3). Perfusion at 17 degrees C also increased myocardial and effluent diTyr (ONOO(-)) by twofold. l-NAME, MnTBAP, or BDM perfused at 37 degrees C before cooling or during 17 degrees C perfusion abrogated, whereas menadione and NaN(3) again enhanced the cold-induced increase in ROS. Our results suggest that hypothermia moderately enhances O(2)(-). generation by mitochondria, whereas O(2)(-). dismutation is markedly slowed. Also, the increase in O(2)(-). during hypothermia reacts with available NO. to produce ONOO(-), and drug-induced O(2)(-). dismutation eliminates the hypothermia-induced increase in O(2)(-).  相似文献   

3.
20-hydroxy ecdysone (20E) is essential to promote adult development in diapausing silkmoth pupae. Increases in protein tyrosine/serine-phosphorylations observed soon after 20E administration supported the initial hypothesis that activation of receptor tyrosine kinase-ras-MAPK pathway could be responsible for the growth promoting effects of 20E. This report pertains to the high levels of protein tyrosine phosphorylations (PTP) that occurred later during the growth to differentiation transition because of its novelty and relevance to 20E dependence of adult development. Further analyses demonstrated that both ecdysone receptor (EcR) and ultraspiracle (USP), the two dimerizing partners of the functional ecdysone receptor, are tyrosine phosphorylated coincidental with high PTP. Enhanced PTP during growth to differentiation transition and concomitant tyrosine phosphorylation of EcR and USP was shown to occur in another silkmoth species pointing to the necessity of similar protein tyrosine phosphorylation pathways for adult development. Properly timed increases in tissue protein tyrosine kinase (PTK) activity could explain the enhancement of PTP in the wing epidermis of both the silkmoths. Thymidine incorporation measurements showed that cessation of DNA synthesis preceded the increase in PTK activity thus emphasizing a role for PTP in aspects of tissue physiology related to differentiative events rather than cell proliferation. Phosphatase and tyrosine kinase inhibitors (Tyrphostins) had minimal effects on adult wing development in vivo. However, the escape of the adult from the pupal case was blocked by a tyrphostin indicating the importance of PTKs in eclosion.  相似文献   

4.
The adipose tissue-derived hormone leptin regulates energy balance through catabolic effects on central circuits, including proopiomelanocortin (POMC) neurons. Leptin activation of POMC neurons increases thermogenesis and locomotor activity. Protein tyrosine phosphatase 1B (PTP1B) is an important negative regulator of leptin signaling. POMC neuron-specific deletion of PTP1B in mice results in reduced high-fat diet-induced body weight and adiposity gain due to increased energy expenditure and greater leptin sensitivity. Mice lacking the leptin gene (ob/ob mice) are hypothermic and cold intolerant, whereas leptin delivery to ob/ob mice induces thermogenesis via increased sympathetic activity to brown adipose tissue (BAT). Here, we examined whether POMC PTP1B mediates the thermoregulatory response of CNS leptin signaling by evaluating food intake, body weight, core temperature (T(C)), and spontaneous physical activity (SPA) in response to either exogenous leptin or 4-day cold exposure (4°C) in male POMC-Ptp1b-deficient mice compared with wild-type controls. POMC-Ptp1b(-/-) mice were hypersensitive to leptin-induced food intake and body weight suppression compared with wild types, yet they displayed similar leptin-induced increases in T(C). Interestingly, POMC-Ptp1b(-/-) mice had increased BAT weight and elevated plasma triiodothyronine (T(3)) levels in response to a 4-day cold challenge, as well as reduced SPA 24 h after cold exposure, relative to controls. These data show that PTP1B in POMC neurons plays a role in short-term cold-induced reduction of SPA and may influence cold-induced thermogenesis via enhanced activation of the thyroid axis.  相似文献   

5.
The present study was designed to explore whether L-carnitine (CA) regulates insulin signaling and modulates the changes in liver in a well-characterized insulin resistant rat model. Adult male Wistar rats were divided into 4 groups. Groups I and IV animals received starch-based control diet, while groups II and III rats were fed a high fructose-diet (60 g/100 g). Groups III and IV animals additionally received CA (300 mg/kg/day i.p). After a period of 60 days hepatic tyrosine phosphorylation status was determined by assaying protein tyrosine phosphatase (PTP) and protein tyrosine kinase (PTK) activities. Oxidative damage was monitored by immunohistochemical localization of 4-hydroxynonenal (4-HNE), 3-nitrotyrosine (3-NT) and dinitrophenol (DNP)-protein adducts. In addition protein kinase C beta II (PKC beta II) expression, propidium iodide staining of isolated hepatocytes and histology of liver tissue were determined to examine liver integrity. Fructose-fed rats displayed reduced insulin action, increased expression of PKC beta II, altered histology, fragmentation of hepatocyte nuclear DNA, and accumulation of oxidatively modified proteins. Simultaneous treatment with CA alleviated the abnormalities associated with fructose feeding. In summary the data suggest that elevated oxidative damage and PKC expression could in part induce insulin resistance and CA has beneficial impact on liver during insulin resistance with modulatory effects at the post-receptor level.  相似文献   

6.
Cold is supposed to be associated with alterations in blood coagulation and a pronounced risk for thrombosis. We studied the effect of clinically encountered systemic hypothermia on microvascular thrombosis in vivo and in vitro. Ferric chloride-induced microvascular thrombus formation was analyzed in cremaster muscle preparations from hypothermic mice. Additionally, flow cytometry and Western blot analysis was used to evaluate the effect of hypothermia on platelet activation. To test whether preceding hypothermia predisposes for enhanced thrombosis, experiments were repeated after hypothermia and rewarming to 37 degrees C. Control animals revealed complete occlusion of arterioles and venules after 742 +/- 150 and 824 +/- 172 s, respectively. Systemic hypothermia of 34 degrees C accelerated thrombus formation in arterioles and venules (279 +/- 120 and 376 +/- 121 s; P < 0.05 vs. 37 degrees C). This was further pronounced after cooling to 31 degrees C (163 +/- 57 and 281 +/- 71 s; P < 0.05 vs. 37 degrees C). Magnitude of thrombin receptor activating peptide (TRAP)-induced platelet activation increased with decreasing temperatures, as shown by 1.8- and 3.0-fold increases in mean fluorescence after PAC-1 binding to glycoprotein (GP)IIb-IIIa and 1.6- and 2.9-fold increases of fibrinogen binding on incubation at 34 degrees C and 31 degrees C. Additionally, tyrosine-specific protein phosphorylation in platelets was increased at hypothermic temperatures. In rewarmed animals, kinetics of thrombus formation were comparable to those in normothermic controls. Concomitantly, spontaneous and TRAP-enhanced GPIIb-IIIa activation did not differ between rewarmed platelets and those maintained continuously at 37 degrees C. Moderate systemic hypothermia accelerates microvascular thrombosis, which might be mediated by increased GPIIb-IIIa activation on platelets but does not cause predisposition with increased risk for microvascular thrombus formation after rewarming.  相似文献   

7.
Commelina communis stomata closed within 1 h of transferring intact plants from 27 degrees C to 7 degrees C, whereas tobacco (Nicotiana rustica) stomata did not until the leaves wilted. Abscisic acid (ABA) did not mediate cold-induced C. communis stomatal closure: At low temperatures, bulk leaf ABA did not increase; ABA did not preferentially accumulate in the epidermis; its flux into detached leaves was lower; its release from isolated epidermis was not greater; and stomata in epidermal strips were less sensitive to exogenous ABA. Stomata of both species in epidermal strips on large volumes of cold KCl failed to close unless calcium was supplied. Therefore, the following cannot be triggers for cold-induced stomatal closure in C. communis: direct effects of temperature on guard or epidermal cells, long-distance signals, and effects of temperature on photosynthesis. Low temperature increased stomatal sensitivity to external CaCl(2) by 50% in C. communis but only by 20% in tobacco. C. communis stomata were 300- to 1,000-fold more sensitive to calcium at low temperature than tobacco stomata, but tobacco epidermis only released 13.6-fold more calcium into bathing solutions than C. communis. Stomata in C. communis epidermis incubated on ever-decreasing volumes of cold calcium-free KCl closed on the lowest volume (0.2 cm(3)) because the epidermal apoplast contained enough calcium to mediate closure if this was not over diluted. We propose that the basis of cold-induced stomatal closure exhibited by intact C. communis leaves is increased apoplastic calcium uptake by guard cells. Such responses do not occur in chill-sensitive tobacco leaves.  相似文献   

8.
目的:初步探讨甲壳胺诱导人肝癌Hep G2细胞凋亡的信号转导机制。方法:采用酶联免疫法,动态检测甲壳胺作用于Hep G2细胞后,细胞膜相及胞浆内的蛋白酪氨酸激酶(PTK)及蛋白酪氨酸磷酸酶(PTP)活性的变化。结果:甲壳胺可以抑制Hep G2细胞内的PTK活性,并呈一定的浓度依赖性;甲壳胺作用Hep G2细胞后,随着PTK活性的减弱,PTP的活性也短暂下降。结论:甲壳胺诱导Hep G2细胞凋亡时,涉及到PTK的活性改变。观察到膜相蛋白中PTK的活性改变早于胞浆蛋白,提示可能存在一个信号的跨膜转运过程;同时伴有PTP的活性变化,可能反映了胞内蛋白酪氨酸残基的磷酸化与去磷酸化即时调节机制。  相似文献   

9.
Treatment of normal human fibroblasts with epidermal growth factor (EGF) results in the rapid (0.5 min) and simultaneous tyrosine phosphorylation of the EGF receptor (EGFr) and several other proteins. An exception to this tyrosine phosphorylation wave was a protein (42 kDa) that became phosphorylated on tyrosine only after a short lag time (5 min). We identified this p42 kDa substrate as the microtubule-associated protein (MAP) kinase using a monoclonal antibody to a peptide corresponding to the C-terminus of the predicted protein (Science 249, 64-67, 1990). EGF treatment of human fibroblasts at 37 degrees C for 5 min resulted in the tyrosine phosphorylation of 60-70% of MAP kinase as determined by the percent that was immunoprecipitated with antiphosphotyrosine antibodies. Like other tyrosine kinase growth factor receptors, the EGFr is activated and phosphorylated at 4 degrees C but is not internalized. Whereas most other substrates were readily tyrosine phosphorylated at 4 degrees C, MAP kinase was not. When cells were first stimulated with EGF at 4 degrees C and then warmed to 37 degrees C without EGF, tyrosine phosphorylation of MAP kinase was again observed. Treatment of cells with the protein kinase C activator phorbol myristate acetate (PMA) also resulted in the tyrosine phosphorylation of MAP kinase, and again only at 37 degrees C. Tryptic phosphopeptide maps demonstrated that EGF and PMA both induced the phosphorylation of the same peptide on tyrosine and threonine. This temperature and PMA sensitivity distinguishes MAP kinase from most other tyrosine kinase substrates in activated human fibroblasts.  相似文献   

10.
The phosphorylation state of a given tyrosine residue is determined by both protein tyrosine kinase (PTK) and protein tyrosine phosphatase (PTP) activities. However, little is known about the functional interaction of these opposing activities at the level of an identified effector molecule. G protein-coupled receptors (GPCRs), including the m1 muscarinic acetylcholine receptor (mAChR), regulate a tyrosine kinase activity that phosphorylates and suppresses current generated by the Kv1.2 potassium channel. We examined the possibility that PTPs also participate in this signaling pathway since the tyrosine phosphatase inhibitor vanadate increases the extent of both Kv1.2 phosphorylation and suppression. We show that an endogenous transmembrane tyrosine phosphatase, receptor tyrosine phosphatase alpha (RPTPalpha), becomes tyrosine phosphorylated and co-immunoprecipitates with Kv1.2 in a manner dependent on m1 receptor activation. The N- and C-termini of Kv1.2 are shown to bind RPTPalpha in vitro. Overexpression of RPTPalpha in Xenopus oocytes increases resting Kv1.2 current. Biochemical and electrophysiological analysis reveals that recruiting RPTPalpha to Kv1.2 functionally reverses the tyrosine kinase-induced phosphorylation and suppression of Kv1.2 current in mammalian cells. Taken together, these results identify RPTPalpha as a new target of m1 mAChR signaling and reveal a novel regulatory mechanism whereby GPCR-mediated suppression of a potassium channel depends on the coordinate and parallel regulation of PTK and PTP activities.  相似文献   

11.
CDC37 is required for p60v-src activity in yeast.   总被引:6,自引:0,他引:6       下载免费PDF全文
Mutations in genes encoding the molecular chaperones Hsp90 and Ydj1p suppress the toxicity of the protein tyrosine kinase p60v-src in yeast by reducing its levels or its kinase activity. We describe isolation and characterization of novel p60v-src-resistant, temperature-sensitive cdc37 mutants, cdc37-34 and cdc37-17, which produce less p60v-src than the parental wild-type strain at 23 degrees C. However, p60v-src levels are not low enough to account for the resistance of these strains. Asynchronously growing cdc37-34 and cdc37-17 mutants arrest in G1 and G2/M when shifted from permissive temperatures (23 degrees C) to the restrictive temperature (37 degrees C), but hydroxyurea-synchronized cdc37-34 and cdc37-17 mutants arrest in G2/M when released from the hydroxyurea block and shifted from 23 to 37 degrees C. The previously described temperature-sensitive cdc37-1 mutant is p60v-src-sensitive and produces wild-type amounts of p60v-src at permissive temperatures but becomes p60v-src-resistant at its restrictive temperature, 38 degrees C. In all three cdc37 mutants, inactivation of Cdc37p by incubation at 38 degrees C reduces p60v-src-dependent tyrosine phosphorylation of yeast proteins to low or undetectable levels. Also, p60v-src levels are enriched in urea-solubilized extracts and depleted in detergent-solubilized extracts of all three cdc37 mutants prepared from cells incubated at the restrictive temperature. These results suggest that Cdc37p is required for maintenance of p60v-src in a soluble, biologically active form.  相似文献   

12.
蛋白质分子中酪氨酸残基可逆性的磷酸化是细胞内信号分子传导的基本方式。两类作用相反的酶参与磷酸化的调节:蛋白酪氨酸激酶(protein tyrosinekinase,PTK)和蛋白酪氨酸磷酸酶(protein tyrosine phosphatase,PTP)。含脯氨酸-谷氨酸-丝氨酸-苏氨酸(P-E-S-T)结构域的蛋白酪氨酸磷酸酶(PTP-PEST)属于非受体型酪氨酸磷酸酶类,其本身能与多种蛋白质相互作用,并在细胞迁移、免疫细胞活化和胚胎发育等生理过程中发挥重要作用。本文对PTP-PEST的结构特点、生理功效、介导的信号传导途径和近年来PTP-PEST在疾病中的作用作一综述。  相似文献   

13.
AIM: To investigate the role of protein tyrosine phosphorylation in gastric wound formation and repair following ulceration.METHODS: Gastric lesions were induced in rats using restraint cold stress. To investigate the effect of oxidative and nitrosative cell stress on tyrosine phosphorylation during wound repair, total activity of protein tyrosine kinase (PTK), protein tyrosine phosphatase (PTP), antioxidant enzymes, nitric oxide synthase (NOS), 2’,5’-oligoadenylate synthetase, hydroxyl radical and zinc levels were assayed in parallel.RESULTS: Ulcer provocation induced an immediate decrease in tyrosine kinase (40% in plasma membranes and 56% in cytosol, P < 0.05) and phosphatase activity (threefold in plasma membranes and 3.3-fold in cytosol), followed by 2.3-2.4-fold decrease (P < 0.05) in protein phosphotyrosine content in the gastric mucosa. Ulceration induced no immediate change in superoxide dismutase (SOD) activity, 30% increase (P < 0.05) in catalase activity, 2.3-fold inhibition (P < 0.05) of glutathione peroxidase, 3.3-fold increase (P < 0.05) in hydroxyl radical content, and 2.3-fold decrease (P < 0.05) in zinc level in gastric mucosa. NOS activity was three times higher in gastric mucosa cells after cold stress. Following ulceration, PTK activity increased in plasma membranes and reached a maximum on day 4 after stress (twofold increase, P < 0.05), but remained inhibited (1.6-3-fold decrease on days 3, 4 and 5, P < 0.05) in the cytosol. Tyrosine phosphatases remained inhibited both in membranes and cytosol (1.5-2.4-fold, P < 0.05). NOS activity remained increased on days 1, 2 and 3 (3.8-, 2.6-, 2.2-fold, respectively, P < 0.05). Activity of SOD increased 1.6 times (P < 0.05) days 4 and 5 after stress. Catalase activity normalized after day 2. Glutathione peroxidase activity and zinc level decreased (3.3- and 2-fold, respectively, P < 0.05) on the last day. Activity of 2’,5’-oligoadenylate synthethase increased 2.8-fold (P < 0.05) at the beginning, and 1.6-2.3-fold (P < 0.05) during ulcer recuperation, and normalized on day 5, consistent with slowing of inflammation processes.CONCLUSION: These studies show diverse changes in total tyrosine kinase activity in gastric mucosa during the recovery process. Oxidative and nitrosative stress during lesion formation might lead to the observed reduction in tyrosine phosphorylation during ulceration.  相似文献   

14.
A cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein tyrosine phosphorylation is involved in the expression of fertilizing ability in mammalian spermatozoa. However, there are only limited data concerning the identification of protein tyrosine kinase (PTK) that is activated by the cAMP signaling. In this study, we have shown data supporting that boar sperm flagellum possesses a unique cAMP-protein kinase A (PKA) signaling cascade leading to phosphorylation of Syk PTK at the tyrosine residues of the activation loop. Ejaculated spermatozoa were washed and then incubated in a modified Krebs-Ringer HEPES medium (mKRH) containing polyvinyl alcohol (PVA) plus 0.1 mM cBiMPS (a cell-permeable cAMP analog), 0.25 mM sodium orthovanadate (Na3VO4) (a protein tyrosine phosphatase (PTP) inhibitor) or both at 38.5 degrees C for 180 min. Aliquots of the sperm suspensions were recovered before and after incubation and then used to detect sperm tyrosine-phosphorylated proteins by Western blotting and indirect immunofluorescence. In the Western blotting, the anti-phosphotyrosine monoclonal antibody (4G10) recognized several bands including 72-kDa protein in the protein extracts from spermatozoa that were incubated solely with cBiMPS. The tyrosine phosphorylation in these sperm proteins was dependent on cBiMPS and enhanced by the addition of Na3VO4. The 72-kDa tyrosine-phosphorylated protein was apparently reacted with the anti-phospho-Syk antibody (Tyr525/526). Indirect immunofluorescence revealed that the connecting and principal pieces of spermatozoa incubated with cBiMPS and Na3VO4 were stained with the anti-phospho-Syk antibody. However, the reactivity of the 72-kDa protein with the anti-phospho-Syk antibody was reduced by the addition of H-89 (a PKA inhibitor, 0.01-0.1 mM) to the sperm suspensions but not affected by the pretreatment of spermatozoa with BAPTA-AM (an intracellular Ca2+ chelator, 0.1 mM). Fractionation of phosphorylated proteins from the spermatozoa with a detergent Nonidet P-40 suggested that the 72-kDa tyrosine-phosphorylated protein might be a cytoskeletal component. Based on these findings, we have concluded that the cAMP-PKA signaling is linked to the Ca2+-independent tyrosine phosphorylation of Syk in the connecting and principal pieces of boar spermatozoa.  相似文献   

15.
Modulation of protein kinase FA /glycogen synthase kinase-3α (kinase FA /GSK-3α) by reversible tyrosine phosphorylation/dephosphorylation was investigated. In addition to genistein, other protein tyrosine kinase (PTK) inhibitors, such as tyrphostin A47 and B42, also could induce tyrosine dephosphorylation and inactivation of kinase FA /GSK-3α in A431 cells, and this process was found to be reversible. Pretreatment of the cells with 100 μM orthovanadate, a protein tyrosine phosphatase (PTP) inhibitor, could diminish significantly the effects of PTK inhibitors on both enzyme activity and phosphotyrosine content of the kinase, suggesting that the PTK inhibitors induced tyrosine dephosphorylation/inactivation of this kinase is mediated by orthovanadate-sensitive PTP(s) in A431 cells. Moreover, the phosphotyrosine moiety of kinase FA /GSK-3α was found to be highly turned over in resting cells. Interestingly, we found that the less active, tyrosine-dephosphorylated form of kinase FA /GSK-3α immunoprecipitated from genistein-treated cells was able to reactivate partially with concomitant rephosphorylation of tyrosine residue in vitro. Taken together, these findings demonstrate that tyrosine phosphorylation and concomitant activation of kinase FA /GSK-3α can be carried out both in vitro and in vivo and an in vivo phosphatase activity may function in antagonism to PTK activation of kinase FA /GSK-3α. J. Cell. Physiol. 171:95–103, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
Clinical and experimental studies indicate that hyperthermia can cause heatstroke with cerebral ischemia and brain damage. However, no study has examined the direct effects of heating carotid artery smooth muscle and tested the hypothesis that hyperthermia induces arterial vasoconstriction and, thereby, decreases cerebral blood flow. We recorded isometric tension of rabbit carotid artery strips in organ baths during stepwise temperature elevation. The heating responses were tested at basal tone, in norepinephrine- and KCl-precontracted vessels, and after electrical field stimulation. Stepwise heating from 37 degrees C to 47 degrees C induced reproducible graded contraction proportional to temperature. The responses could be elicited at basal tone and in precontracted vessels. Heating decreased the contractile responses to norepinephrine and electrical field stimulation but increased contraction to KCl. These responses were not eliminated by pretreatment with the neuronal blocker tetrodotoxin. Our results demonstrate that heating carotid artery preparations above 37 degrees C (normothermia) induced a reversible graded vasoconstriction proportional to temperature. In vivo this reaction may lead to a decrease in cerebral blood flow and cerebral ischemia with brain damage as in heatstroke. The heating-induced contraction is not mediated by a neurogenic process but is due to altered transcellular Ca2+ transport. Cooling, in particular of the neck area, therefore, should be used in the treatment of heatstroke.  相似文献   

17.
Prolactin (PRL) involvement in the regulation of luteal steroidogenesis in pigs during the early luteal phase and pregnancy is well documented. The intracellular mechanism of PRL action in steroidogenic cells, however, is not fully recognized yet. In the current study, we have tested the hypothesis that protein kinase C (PKC) and tyrosine kinases (PTK) as well as serine-threonine (PP) and tyrosine phosphatases (PTP) are involved in PRL signaling in luteal cells originated from the early corpora lutea (CL) of cyclic sows. Luteal cells (50 000 cells/ml M199) were incubated for 8 h (37 degrees C) with PRL (200 ng) and low density lipoproteins (LDL) to stimulate P(4) production. In addition, treatments included: PKC inhibitors--staurosporine and chelerythrine chloride; tyrosine kinase inhibitors--genistein and tyrphostin; serine-threonine phosphatase inhibitors--okadaic acid, cantharidin (inhibitors of PP1/2A) and cypermethrin (inhibitor of PP2B); and tyrosine phosphatase inhibitor--sodium orthovanadate. Moreover, after incubation (37 degrees C) with PRL (200 ng) for 2, 5, 10 or 20 min, luteal cells were homogenized and cytosolic as well as membrane fractions have been obtained. This was followed by partial purification of the subcellular fractions by DEAE-cellulose chromatography and determination of PKC activity by measuring the transfer of (32)P from [gamma-(32)P]ATP to histone III-S. In unstimulated porcine luteal cells the major proportion of PKC activity was present in the cytosol. Incubation of luteal cells with PRL resulted in a rapid, time dependent increase in the amount of PKC activity in the membrane fraction and a decrease in the amount of PKC activity in the cytosol fraction. PKC activity in the membrane fraction was maximal after 5 min of exposure the cells to PRL. Inhibitors of PKC and PTK suppressed PRL and LDL-induced P(4) production by porcine luteal cells. It is of interest that stimulated P(4) production was also reduced by inhibitors of PTP and PP1/2A (okadaic acid, cantharidin). In contrast, cypermethrin did not affect P(4) production stimulated by PRL and LDL. The results of the current study support the hypothesis that PKC and tyrosine kinases are intracellular mediators of PRL action in porcine luteal cells during the first days of the estrous cycle. The involvement of protein phosphatases in transmission of the PRL signal in early luteal cells in pigs is also suggested.  相似文献   

18.
Epidermal growth factor (EGF) activates the intrinsic tyrosine-specific protein kinase of its receptor (EGF-R). We studied the effect of EGF-dependent EGF-R internalization on receptor autophosphorylation and on the appearance of tyrosine phosphoproteins in rat liver epithelial cells. Peak receptor autophosphorylation activity (3- to 6-fold over basal) was found in homogenates of EGF-treated cells at times when the majority of receptors (greater than 90%) had been internalized but not yet degraded (15 to 30 min). Stimulated activity persisted for at least 2 h if EGF-R degradation was blocked by methylamine or 18 degrees C incubation. Detection of stimulated autophosphorylation in homogenates of cells treated with EGF in culture required detergent in the assay. Detergent was not necessary to detect stimulated autophosphorylation when EGF was added directly to homogenates of untreated cells. Immunoblots using antibodies against phosphotyrosine (p-Tyr) demonstrated that EGF treatment of intact cells increased the p-Tyr content of at least seven proteins (EGF-R, 115, 100, 75, 66, 57, and 52 kDa) within 5 s. Incubation of intact cells with EGF at 0 degrees C to prevent endocytosis still resulted in tyrosine phosphorylation of these seven proteins. In contrast, several substrates (120, 78, and 38 kDa) showed delayed increases (45-90 s) in tyrosine phosphorylation at 37 degrees C; their phosphorylation was even slower at 18 degrees C and did not occur at 0 degrees C. In cells incubated with EGF at 18 degrees C or in the presence of methylamine, EGF-R p-Tyr in the intact cell was lost by 2 h even though receptor was not degraded and still exhibited enhanced autophosphorylation in the homogenate assay. These findings suggest that tyrosine phosphorylation in response to EGF occurs predominantly during the initial stages of endocytosis and is mediated for the most part by ligand-receptor complexes at the cell surface. A subset of phosphorylations may require intracellular movement.  相似文献   

19.
The regulation of PLD2 activation is poorly understood at present. Transient transfection of COS-7 with a mycPLD2 construct results in elevated levels of PLD2 enzymatic activity and tyrosyl phosphorylation. To investigate whether this phosphorylation affects PLD2 enzymatic activity, anti-myc immunoprecipitates were treated with recombinant protein tyrosine phosphatase PTP1B. Surprisingly, lipase activity and PY levels both increased over a range of PTP1B concentrations. These increases occurred in parallel to a measurable PTP1B-associated phosphatase activity. Inhibitor studies demonstrated that an EGF-receptor type kinase is involved in phosphorylation. In a COS-7 cell line created in the laboratory that stably expressed myc-PLD2, PTP1B induced a robust (>6-fold) augmentation of myc-PLD2 phosphotyrosine content. The addition of growth factor receptor-bound protein 2 (Grb2) to cell extracts also elevated PY levels of myc-PLD (>10-fold). Systematic co-immunoprecipitation-immunoblotting experiments pointed at a physical association between PLD2, Grb2, and PTP1B in both physiological conditions and in overexpressed cells. This is the first report of a demonstration of the mammalian isoform PLD2 existing in a ternary complex with a protein tyrosine phosphatase, PTP1b, and the docking protein Grb2 which greatly enhances tyrosyl phosphorylation of the lipase.  相似文献   

20.
Isolated rat pancreatic islets were incubated at 3.3 (low) and 16.7 (high) mM glucose with different concentrations of the phosphotyrosine phosphatase (PTP) inhibitor, peroxovanadate (pV). At low glucose, pV stimulated insulin secretion 2- to 4-fold, but it inhibited insulin secretion at 16.7 mM. The latter effect was not due to an inhibition of glucose metabolism, nor was it inhibited by pertussis toxin pretreatment. In addition, pV stimulated insulin secretion approximately 3-fold in depolarized cells at both low and high glucose. pV markedly increased the tyrosine phosphorylation of several proteins, including IRS-1 and -2, and also increased the phosphorylation of the downstream kinases PKB/Akt and MAPK. PKB/Akt, but not MAPK, was also phosphorylated in the absence of pV. Intracellular pV-stimulated tyrosine phosphorylation, including that of IRS-2, was generally increased by high glucose suggesting a further inhibition of PTP and/or enhanced tyrosine kinase activity. Thus, these data suggest that intracellular tyrosine and serine (PKB/Akt) phosphorylation are related to insulin secretion but they do not support a unique and direct link between IRS-2 tyrosine phosphorylation and glucose-stimulated insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号