首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Akt participation in the Wnt signaling pathway through Dishevelled   总被引:23,自引:0,他引:23  
Inactivation of glycogen synthase kinase 3beta (GSK3beta) and the resulting stabilization of free beta-catenin are critical steps in the activation of Wnt target genes. While Akt regulates GSK3alpha/beta in the phosphatidylinositide 3-OH kinase signaling pathway, its role in Wnt signaling is unknown. Here we report that expression of Wnt or Dishevelled (Dvl) increased Akt activity. Activated Akt bound to the Axin-GSK3beta complex in the presence of Dvl, phosphorylated GSK3beta and increased free beta-catenin levels. Furthermore, in Wnt-overexpressing PC12 cells, dominant-negative Akt decreased free beta-catenin and derepressed nerve growth factor-induced differentiation. Therefore, Akt acts in association with Dvl as an important regulator of the Wnt signaling pathway.  相似文献   

2.
The differentiation of preadipocytes into adipocytes requires the suppression of canonical Wnt signaling, which appears to involve a peroxisome proliferator-activated receptor gamma (PPARgamma)-associated targeting of beta-catenin to the proteasome. In fact, sustained activation of beta-catenin by expression of Wnt1 or Wnt 10b in preadipocytes blocks adipogenesis by inhibiting PPARgamma-associated gene expression. In this report, we investigated the mechanisms regulating the balance between beta-catenin and PPARgamma signaling that determines whether mouse fibroblasts differentiate into adipocytes. Specifically, we show that activation of PPARgamma by exposure of Swiss mouse fibroblasts to troglitazone stimulates the degradation of beta-catenin, which depends on glycogen synthase kinase (GSK) 3beta activity. Mutation of serine 37 (a target of GSK3beta) to an alanine renders beta-catenin resistant to the degradatory action of PPARgamma. Ectopic expression of the GSK3beta phosphorylation-defective S37A-beta-catenin in Swiss mouse fibroblasts expressing PPARgamma stimulates the canonical Wnt signaling pathway without blocking their troglitazone-dependent differentiation into lipid-laden cells. Analysis of protein expression in these cells, however, shows that S37A-beta-catenin inhibits a select set of adipogenic genes because adiponectin expression is completely blocked, but FABP4/aP2 expression is unaffected. Furthermore, the mutant beta-catenin appears to have no affect on the ability of PPARgamma to bind to or transactivate a PPAR response element. The S37A-beta-catenin-associated inhibition of adiponectin expression coincides with an extensive decrease in the abundance of C/EBPalpha in the nuclei of the differentiated mouse fibroblasts. Taken together, these data suggest that GSKbeta is a key regulator of the balance between beta-catenin and PPARgamma activity and that activation of canonical Wnt signaling downstream of PPARgamma blocks expression of a select subset of adipogenic genes.  相似文献   

3.
beta-catenin is a target for the ubiquitin-proteasome pathway.   总被引:38,自引:3,他引:35       下载免费PDF全文
H Aberle  A Bauer  J Stappert  A Kispert    R Kemler 《The EMBO journal》1997,16(13):3797-3804
beta-catenin is a central component of the cadherin cell adhesion complex and plays an essential role in the Wingless/Wnt signaling pathway. In the current model of this pathway, the amount of beta-catenin (or its invertebrate homolog Armadillo) is tightly regulated and its steady-state level outside the cadherin-catenin complex is low in the absence of Wingless/Wnt signal. Here we show that the ubiquitin-dependent proteolysis system is involved in the regulation of beta-catenin turnover. beta-catenin, but not E-cadherin, p120(cas) or alpha-catenin, becomes stabilized when proteasome-mediated proteolysis is inhibited and this leads to the accumulation of multi-ubiquitinated forms of beta-catenin. Mutagenesis experiments demonstrate that substitution of the serine residues in the glycogen synthase kinase 3beta (GSK3beta) phosphorylation consensus motif of beta-catenin inhibits ubiquitination and results in stabilization of the protein. This motif in beta-catenin resembles a motif in IkappaB (inhibitor of NFkappaB) which is required for the phosphorylation-dependent degradation of IkappaB via the ubiquitin-proteasome pathway. We show that ubiquitination of beta-catenin is greatly reduced in Wnt-expressing cells, providing the first evidence that the ubiquitin-proteasome degradation pathway may act downstream of GSK3beta in the regulation of beta-catenin.  相似文献   

4.
5.
6.
Axin was identified as a regulator of embryonic axis induction in vertebrates that inhibits the Wnt signal transduction pathway. Epistasis experiments in frog embryos indicated that Axin functioned downstream of glycogen synthase kinase 3beta (GSK3beta) and upstream of beta-catenin, and subsequent studies showed that Axin is part of a complex including these two proteins and adenomatous polyposis coli (APC). Here, we examine the role of different Axin domains in the effects on axis formation and beta-catenin levels. We find that the regulators of G-protein signaling domain (major APC-binding site) and GSK3beta-binding site are required, whereas the COOH-terminal sequences, including a protein phosphatase 2A binding site and the DIX domain, are not essential. Some forms of Axin lacking the beta-catenin binding site can still interact indirectly with beta-catenin and regulate beta-catenin levels and axis formation. Thus in normal embryonic cells, interaction with APC and GSK3beta is critical for the ability of Axin to regulate signaling via beta-catenin. Myc-tagged Axin is localized in a characteristic pattern of intracellular spots as well as at the plasma membrane. NH2-terminal sequences were required for targeting to either of these sites, whereas COOH-terminal sequences increased localization at the spots. Coexpression of hemagglutinin-tagged Dishevelled (Dsh) revealed strong colocalization with Axin, suggesting that Dsh can interact with the Axin/APC/GSK3/beta-catenin complex, and may thus modulate its activity.  相似文献   

7.
To characterize the contribution of glycogen synthase kinase 3beta (GSK3beta) inactivation to insulin-stimulated glucose metabolism, wild-type (WT-GSK), catalytically inactive (KM-GSK), and uninhibitable (S9A-GSK) forms of GSK3beta were expressed in insulin-responsive 3T3-L1 adipocytes using adenovirus technology. WT-GSK, but not KM-GSK, reduced basal and insulin-stimulated glycogen synthase activity without affecting the -fold stimulation of the enzyme by insulin. S9A-GSK similarly decreased cellular glycogen synthase activity, but also partially blocked insulin stimulation of the enzyme. S9A-GSK expression also markedly inhibited insulin stimulation of IRS-1-associated phosphatidylinositol 3-kinase activity, but only weakly inhibited insulin-stimulated Akt/PKB phosphorylation and glucose uptake, with no effect on GLUT4 translocation. To further evaluate the role of GSK3beta in insulin signaling, the GSK3beta inhibitor lithium was used to mimic the consequences of insulin-stimulated GSK3beta inactivation. Although lithium stimulated the incorporation of glucose into glycogen and glycogen synthase enzyme activity, the inhibitor was without effect on GLUT4 translocation and pp70 S6 kinase. Lithium stimulation of glycogen synthesis was insensitive to wortmannin, which is consistent with its acting directly on GSK3beta downstream of phosphatidylinositol 3-kinase. These data support the hypothesis that GSK3beta contributes to insulin regulation of glycogen synthesis, but is not responsible for the increase in glucose transport.  相似文献   

8.
Cortical rotation and concomitant dorsal translocation of cytoplasmic determinants are the earliest events known to be necessary for dorsoventral patterning in Xenopus embryos. The earliest known molecular target is beta-catenin, which is essential for dorsal development and becomes dorsally enriched shortly after cortical rotation. In mammalian cells cytoplasmic accumulation of beta-catenin follows reduction of the specific activity of glycogen synthase kinase 3-beta (GSK3beta). In Xenopus embryos, exogenous GSK3beta) suppresses dorsal development as predicted and GSK3beta dominant negative (kinase dead) mutants cause ectopic axis formation. However, endogenous GSK3beta regulation is poorly characterized. Here we demonstrate two modes of GSK3beta regulation in Xenopus. Endogenous mechanisms cause depletion of GSK3beta protein on the dorsal side of the embryo. The timing, location and magnitude of the depletion correspond to those of endogenous beta-catenin accumulation. UV and D(2)O treatments that abolish and enhance dorsal character of the embryo, respectively, correspondingly abolish and enhance GSK3beta depletion. A candidate regulator of GSK3beta, GSK3-binding protein (GBP), known to be essential for axis formation, also induces depletion of GSK3beta. Depletion of GSK3beta is a previously undescribed mode of regulation of this signal transducer. The other mode of regulation is observed in response to Wnt and dishevelled expression. Neither Wnt nor dishevelled causes depletion but instead they reduce GSK3beta-specific activity. Thus, Wnt/Dsh and GBP appear to effect two biochemically distinct modes of GSK3beta regulation.  相似文献   

9.
10.
11.
12.
13.
Gu D  Yu B  Zhao C  Ye W  Lv Q  Hua Z  Ma J  Zhang Y 《FEBS letters》2007,581(3):382-388
Pleiotrophin (PTN) plays diverse roles in cell growth and differentiation. In this investigation, we demonstrate that PTN plays a negative role in adipogensis and that glycogen synthase kinase 3beta (GSK-3beta) and beta-catenin are involved in the regulation of PTN-mediated preadipocyte differentiation. Knocking down the expression of PTN using siRNA resulted in an increase in phospho-GSK-3beta expression, and the accumulation of nuclear beta-catenin, which are critical downstream signaling proteins for both the PTN and Wnt signaling pathways. Our investigation suggests that there is a PTN/PI3K/AKT/GSK-3beta/beta-catenin signaling pathway, which cross-talks with the Wnt/Fz/GSK-3beta/beta-catenin pathway and negatively regulates adipogenesis.  相似文献   

14.
15.
Wnt ligands bind receptors of the Frizzled (Fz) family to control cell fate, proliferation, and polarity. Canonical Wnt/Fz signaling stabilizes beta-catenin by inactivating GSK3beta, leading to the translocation of beta-catenin to the nucleus and the activation of Wnt target genes. Noncanonical Wnt/Fz signaling activates RhoA and Rac, and the latter triggers the activation of c-Jun N-terminal kinase (JNK). Here, we show that exposure of B-lymphocytes to Wnt3a-conditioned media activates JNK and raises cytosolic beta-catenin levels. Both the Rac guanine nucleotide exchange factor Asef and the mitogen-activated protein kinase kinase kinase kinase germinal center kinase-related enzyme (GCKR) are required for Wnt-mediated JNK activation in B cells. In addition, we show that GCKR positively affects the beta-catenin pathway in B cells. Reduction of GCKR expression inhibits Wnt3a-induced phosphorylation of GSK3beta at serine 9 and decreases the accumulation of cytosolic beta-catenin. Furthermore, Wnt signaling induces an interaction between GCKR and GSK3beta. Our findings demonstrate that GCKR facilitates both canonical and noncanonical Wnt signaling in B lymphocytes.  相似文献   

16.
Wnt signaling controls the phosphorylation status of beta-catenin   总被引:19,自引:0,他引:19  
At the heart of the canonical Wnt signaling cascade, adenomatous polyposis coli (APC), axin, and GSK3 constitute the so-called destruction complex, which controls the stability of beta-catenin. It is generally believed that four conserved Ser/Thr residues in the N terminus of beta-catenin are the pivotal targets for the constitutively active serine kinase GSK3. In cells that do not receive Wnt signals, glycogen synthase kinase (GSK) is presumed to phosphorylate beta-catenin, thus marking the latter for proteasomal degradation. Wnt signaling inhibits GSK3 activity. As a consequence, beta-catenin would no longer be phosphorylated and accumulate to form nuclear complexes with TCF/LEF factors. Although mutations in or near the N-terminal Ser/Thr residues stabilize beta-catenin in several types of cancer, the hypothesis that Wnt signaling controls phosphorylation of these residues remains unproven. We have generated a monoclonal antibody that recognizes an epitope containing two of the four residues when both are not phosphorylated. The epitope is generated upon Wnt signaling as well as upon pharmacological inhibition of GSK3 by lithium, providing formal proof for the regulated phosphorylation of the Ser/Thr residues of beta-catenin by Wnt signaling. Immunohistochemical analysis of mouse embryos utilizing the antibody visualizes sites that transduce Wnt signals through the canonical Wnt cascade.  相似文献   

17.
18.
Beta-catenin is implicated in quite different cellular processes, which require a fine-tuned regulation of its function. Here we demonstrate that cyclin-dependent kinase 6 (CDK6), in association with cyclin D1 (CCND1), directly binds to beta-catenin. We showed that CCND1-CDK6 phosphorylates beta-catenin on serine 45 (S45). This phosphorylation creates a priming site for glycogen synthase kinase 3beta (GSK3beta) and is both necessary and sufficient to initiate the beta-catenin phosphorylation-degradation cascade. Moreover, co-immunoprecipitation assays using Wnt3a-conditioned medium reveals that while Wnt stimulation leads to the dissociation of beta-catenin from axin and casein kinase Ialpha (CKIalpha), Wnt treatment promotes an increase in CCND1 level and the association of beta-catenin with CCND1-CDK6. Furthermore, Wnt3a-stimulated cytosolic beta-catenin levels were higher in CDK6 knockout mouse embryonic fibroblasts (CDK6-/- MEFs) compared to wild-type MEFs. Thus, the CCND1-CDK6 complex is like to negatively regulate Wnt signaling by mediating beta-catenin phosphorylation and its subsequent degradation in Wnt-stimulated cells.  相似文献   

19.
20.
To investigate the role of 3-phosphoinositide-dependent protein kinase 1 (PDK1) in the insulin-signaling pathway for glucose metabolism, wild-type (wt), the kinase-dead (kd), or the plecstrin homology (PH) domain deletion (DeltaPH) mutant of PDK1 was expressed using an adenovirus gene transduction system in 3T3-L1 adipocytes. wt-PDK1 and kd-PDK1 were found in both membrane and cytosol fractions, whereas DeltaPH-PDK1, which exhibited PDK1 activity similar to that of wt-PDK1, was detected exclusively in the cytosol fraction. Insulin dose dependently activated protein kinase B (PKB) but did not change atypical protein kinase C (aPKC) activity in control cells. aPKC activity was not affected by expression of wt-, kd-, or DeltaPH-PDK1 in either the presence or the absence of insulin. Overexpression of wt-PDK1 enhanced insulin-induced activation of PKB as well as insulin-induced phosphorylation of glycogen synthase kinase (GSK)3alpha/beta, a direct downstream target of PKB, although insulin-induced glycogen synthesis was not significantly enhanced by wt-PDK1 expression. Neither DeltaPH-PDK1 nor kd-PDK1 expression affected PKB activity, GSK3 phosphorylation, or glycogen synthesis. Thus membrane localization of PDK1 via its PH domain is essential for insulin signaling through the PDK1-PKB-GSK3alpha/beta pathway. Glucose transport activity was unaffected by expression of wt-PDK1, kd-PDK1, or DeltaPH-PDK1 in either the presence or the absence of insulin. These findings suggest the presence of a signaling pathway for insulin-stimulated glucose transport in which PDK1 to PKB or aPKC is not involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号