首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The penicillin tolerance exhibited by amino acid-deprived Escherichia coli has been previously proposed to be a consequence of the stringent response. Evidence indicating that penicillin tolerance is directly attributable to guanosine 3',5'-bispyrophosphate (ppGpp) overproduction and not to some other effect of amino acid deprivation is now presented. Accumulation of ppGpp in the absence of amino acid deprivation was achieved by the controlled overexpression of the cloned relA gene, which encodes ppGpp synthetase I. The overproduction of ppGpp resulted in the inhibition of both peptidoglycan and phospholipid synthesis and in penicillin tolerance. The minimum concentration of ppGpp required to establish these phenomena was determined to be 870 pmol per mg (dry weight) of cells. This represented about 70% of the maximum level of ppGpp accumulated during the stringent response. Penicillin tolerance and the inhibition of peptidoglycan synthesis were both suppressed when ppGpp accumulation was prevented by treatment with chloramphenicol, an inhibitor of ppGpp synthetase I activation. Glycerol-3-phosphate acyltransferase, the product of plsB, was recently identified as the main site of ppGpp inhibition in phospholipid synthesis (R. J. Health, S. Jackowski, and C. O. Rock, J. Biol. Chem. 269:26584-26590, 1994). The overexpression of the cloned plsB gene reversed the penicillin tolerance conferred by ppGpp accumulation. This result supports previous observations indicating that the membrane-associated events in peptidoglycan metabolism were dependent on ongoing phospholipid synthesis. Interestingly, treatment with beta-lactam antibiotics by itself induced ppGpp accumulation, but the maximum levels attained were insufficient to confer penicillin tolerance.  相似文献   

2.
3.
Cells of Escherichia coli which enter a phase of starvation for Pi induce the synthesis of the nucleotide guanosine 3',5'-bispyrophosphate (ppGpp). This induction is relA independent but depends on the spoT gene product. A mutant unable to produce ppGpp is impaired in the expression of two genes which belong to the pho regulon, a defect which is dependent on the product of spoT. We suggest that ppGpp is essential for the proper induction of the genes which belong to the pho regulon.  相似文献   

4.
Summary When supplemented with Escherichia coli stringgent factor, 80S ribosomes from various sources failed to support guanosine tetra- and pentaphosphate ((p)ppGpp) synthesis. In contrast, ribosomal proteins from 80S, 60S or 40S particles (mouse embryos, rabbit reticulocytes) crossreacted with the E. coli stringent factor. Significant stimulation of (p)ppGpp synthesis was achieved proteins/ml. These observations may provide additional criteria to detect homologies between eukaryotic and prokaryotic ribosomal proteins.  相似文献   

5.
6.
4-(3-Bromoacetylpyridinio)butyldiphosphoadenosine was synthesized with a [carbonyl-14C]acetyl label. The reactive coenzyme analogue inactivates alcohol dehydrogenase from Bacillus stearothermophilus by forming a covalent enzyme-coenzyme compound. The inactivation kinetics as well as the spectral properties of the modified enzyme after treatment with sodium hyposulphite suggest that the analogue is bound at the coenzyme binding site. B. stearothermophilus alcohol dehydrogenase modified with 14C-labelled coenzyme analogue and subseqeuntly carboxymethylated with unlabelled iodoacetic acid was digested with trypsin. The radioactive peptide was isolated and sequenced in parallel with the corresponding peptide similarly isolated from unmodified enzyme that had instead been carboxymethylated with iodo[14C]acetic acid. Amino acid and sequence analysis show that Cys-38 of the B. stearothermophilus alcohol dehydrogenase was modified by the reactive coenzyme analogue. This residue is homologous to Cys-43 in yeast alcohol dehydrogenase and Cys-46 in the horse liver enzyme but, unlike the latter two, Cys-38 is not reactive towards iodoacetate in the native bacterial enzyme.  相似文献   

7.
It was known previously that 1) the relA gene of Escherichia coli encodes an enzyme capable of guanosine 3',5'-bispyrophosphate (ppGpp) synthesis, 2) an uncharacterized source of ppGpp synthesis exists in relA null strains, and 3) cellular degradation of ppGpp is mainly due to a manganese-dependent ppGpp 3'-pyrophosphohydrolase encoded by the spoT gene. Here, the effects of spoT gene insertions and deletions are compared with analogous alterations in neighboring genes in the spo operon and found to be lethal in relA+ strains as well as slower growing in relAl backgrounds than delta relA hosts. Cells with null alleles in both the relA and spoT genes are found no longer to accumulate ppGpp after glucose exhaustion or after chelation of manganese ions by picolinic acid addition; the inability to form ppGpp is reversed by a minimal spoT gene on a multicopy plasmid. Strains apparently lacking ppGpp show a complex phenotype including auxotrophy for several amino acids and morphological alterations. We propose that the SpoT protein can either catalyze or control the alternative pathway of ppGpp synthesis in addition to its known role as a (p)ppGpp 3'-pyrophosphohydrolase. We favor the possibility that the SpoT protein is a bifunctional enzyme capable of catalyzing either ppGpp synthesis or degradation.  相似文献   

8.
The unusual nucleotide guanosine tetraphosphate, ppGpp, which appears following amino acid starvation in “stringent” strains of bacteria binds to the elongation factor EFTu with a dissociation constant of about 8 × 10?9m. ppGpp binds competitively with GDP and GTP, and EFTs catalyzes the exchange reaction of ppGpp with EFTu · GDP. ppGpp binds to EFTu about 50 times more tightly than does GTP, and, in the absence of elongation factor EFTs, it will effectively inhibit the formation of the ternary complex Phe-tRNA · EFTu · GTP. However, in the presence of EFTs there is rapid equilibration between EFTu · GTP and EFTu · ppGpp which allows EFTu to be rapidly and extensively incorporated into the stable ternary complex. A preliminary estimate of the constant for the dissociation of Phe-tRNA from the ternary complex is 10?810?9m. ppGpp inhibits the enzymatic binding of Phe-tRNA to ribosomes; however, EFTs reverses this inhibition. ppGpp moderately inhibits phenylalanine polymerization even in the presence of EFTs. This inhibition probably involves an interaction of ppGpp with elongation factor G, the translocation factor. It appears that in the intact cell ppGpp would not be an effective inhibitor of EFTu, and that little EFTu · ppGpp can exist in the cell.  相似文献   

9.
10.
G N Bennett  G R Gough  P T Gilham 《Biochemistry》1976,15(21):4623-4628
A new procedure for the synthesis of the pyrophosphate bond has been employed in the preparation of nucleoside dipyrophosphates from nucleoside 3',5'-diphosphates. The method makes use of a powerful phosphorylating agent generated in a mixture of cyanoethyl phosphate, dicyclohexylcarbodiimide, and mesitylenesulfonyl chloride in order to avoid possible intramolecular reactions between the two phosphate groups on the sugar ring. That such reactions can readily occur was shown by the facile cyclization of deoxyguanosine 3',5'-diphosphate to P1,P2-deoxyguanosine 3',5'-cyclic pyrophosphate in the presence of dicyclohexylcarbodiimide alone. The phosphorylation reagent was initially tested in the conversion of deoxyguanosine 3',5'-diphosphate to the corresponding 3',5'-dipyrophosphate and was then used to phosphorylate 2'-O-(alpha-methoxyethyl)guanosine 3',5'-diphosphate, which had been prepared from 2'-O-(alpha-methoxyethyl)guanosine. In the latter case, the addition of the two beta phosphate groups was accomplished in 40% yield. Removal of the methoxyethyl group from the phosphorylated product gave guanosine 3',5'-dipyrophosphate, which was shown to be identical with guanosine tetraphosphate prepared enzymatically from a mixture of GDP and ATP. A modification of published procedures was also necessary to effect the synthesis of guanosine bis(methylenediphosphonate). Guanosine was treated with methylenediphosphonic acid and dicyclohexylcarbodiimide in the absence of added base. The product consisted of a mixture of guanosine 2',5' - and 3',5'-bis(methylenediphosphonate), which was resolved by anion-exchange chromatography. The 2',5' and 3',5' isomers are interconvertible at low pH, with the ultimate formation of an equilibrium mixture having a composition ratio of 2:3. The predominant constituent of this mixture has been unequivocally identified as the 3',5' isomer by synthesis from 2'-O-tetrahydropyranylguanosine.  相似文献   

11.
12.
13.
14.
Guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate 3'-diphosphate (pppGpp) were identified in the vegative mycelium of Streptomyces griseus. Adenosine 5'-diphosphate 3'-diphosphate (ppApp) and adenosine 5'-triphosphate 3'-diphosphate (pppApp) were not present but several other phosphorus-containing compounds which may have been inorganic polyphosphates were detected. During exponential growth of S. griseus the concentrations of ppGpp and pppGpp were several times higher than in the stationary stage. They fell sharply when exponential growth ended and then remained at an almost constant basal level. For the tetraphosphate the maximum concentration was about 50, and for the basal level about 10, pmol per millilitre of a culture with an optical density of 1.0. Production of streptomycin started several hours after exponential growth had ended and the concentrations of ppGpp and pppGpp had fallen. Streptomycin synthesis was delayed if the cells were resuspended just before production started in fresh medium lacking phosphate, but it was not delayed by glucose starvation. Both cultures, as well as cultures transferred to nitrogen-free medium, showed an immediate increase in ppGpp content to about four-fold the basal level. The results suggest that the guanosine polyphosphates do not directly control initiation of streptomycin production in S. griseus. Twelve additional species of Streptomyces examined all contained ppGpp and pppGpp.  相似文献   

15.
16.
Salt-washed ribosomes from Escherichia coli, plus stringent protein, form more ppGpp than pppGpp from GTP at all times, but unwashed ribosomes are shown to synthesize primarily pppGpp as the initial product.  相似文献   

17.
The biologic roles of guanosine 3',5'-monophosphate (cyclic GMP) and adenosine 3',5'-monophosphate (cyclic AMP) in the secretion of lysosomal enzymes from, and in phagocytosis by, human neurtrophils were studied. Contact between neurophils and particulate immunologic reactants results in both phagocytosis of the particles and secretion of lysosomal enzymes. These cellular events are accompanied by the accumulation of cyclic GMP and require the presence of extracellular caclium. Acetylcholine, pilocarpine, and cyclic GMP enhance, whereas epinephrine, cyclic AMP, and/or dibutyryl cyclic AMP inhibit, both phagocytosis and lysosomal enzyme secretion. The stimulatory action of cholinergic agents and the inhibitory action of epinephrine are accompanied by the accumulation of cyclic GMP and cyclic AMP, respectively, in human neutrophils. The data suggest that cyclic GMP mediates whereas cyclic AMP inhibits the major functions of human neutrophils. Moreover, by virtue of their effects of cyclic nucleotide accumulation, autonomic neurohormones are capable of modulating human neutrophil function.  相似文献   

18.
19.
20.
The intracellular alarmone guanosine 3′,5′-bis(diphosphate) (ppGpp) has been thoroughly investigated over the past 40 years and has become one of the best-known effectors in bacterial physiology. ppGpp is also of great importance for biotechnological applications. Systems biology research, involving experimental and mathematical approaches, has contributed a great deal to uncovering the alarmone’s complex regulatory effects. HPLC analysis and UV detection are used to quantify intracellular ppGpp. The samples analyzed also contain other phosphorylated guanine nucleotides and, therefore, are spiked with a standard ppGpp solution. A rapidly growing number of laboratories are turning to synthesizing the nucleotide in vitro involving time-consuming protocols and yielding only low amounts of ppGpp. The current article provides a protocol for the preparation of large quantities of a ribosome extract that contains high ppGpp synthesis activity. The demonstrated upscaling from shaking flask to bioreactor cultivation involves the continuous and refrigerated harvest of the biomass. 13C NMR analysis enabled the structural characterization of the synthesis product and was complemented by mass spectrometry and methods that are commonly used to identify ppGpp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号