首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We report a girl with a de novo duplication of the distal part of the long arm of chromosome 3 and review the literature. Our patient had the facial characteristics and many other anomalies of the partial 3q duplication syndrome. As a hitherto undescribed symptom in partial 3q trisomy syndrome, she had microphthalmia. The karyotype of this girl was interpreted as an inverse duplication of the terminal portion of chromosome 3: 46,XX,inv dup (3)(pter-q28::q28–q25::q28-qter). Quantitative hybridisation studies with 3p and 3q probes gave a consistent 32 ratio of the relative intensities of the q bands in relation to the p bands between patient and control. This confirmed the presence of a 3q duplication and delineated the location of D3S5 to 3q25–3q28.  相似文献   

2.
3.
4.
5.
Henry HL 《Steroids》2001,66(3-5):391-398
The kidney is the major source of the circulating dihydroxylated metabolites of vitamin D, 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] and 24R,25-dihydroxyvitamin D(3) [24R,25(OH)(2)D(3)]. The enzymes which catalyze the production of these two dihydroxylated vitamin D metabolites are the 25(OH)D(3)-1alpha-hydroxylase (1alpha-hydroxylase) and -24R-hydroxylase (24R-hydroxylase), respectively. While there is no controversy regarding the fundamental importance of the 1alpha-hydroxylase in the production of the steroid hormone 1alpha,25(OH)(2)D(3), the biologic significance of the 24R-hydroxylase has been the subject of ongoing discussion. Some hold that it is strictly catabolic, leading to side chain oxidation and cleavage of 25-hydroxylated vitamin D sterols, and others hold that it plays a biosynthetic role in the production of 24R,25(OH)(2)D(3) which has biologic activities distinct from those of 1alpha,25(OH)(2)D(3). The 24R-hydroxylase has properties in common with other multicatalytic steroidogenic enzymes: (1) the enzyme carries out multiple oxidative and carbon-carbon bond cleavages; (2) it utilizes two natural substrates; (3) its regulation varies depending on the cell or tissue in which it occurs. The purpose of this paper is to review the current literature relevant to the characteristics of the 24R-hydroxylase and its regulation in the context of other multicatalytic steroid hydroxylases in order to provide a perspective regarding its possible function as both a catabolic and activating enzyme in the vitamin D endocrine system.  相似文献   

6.
The differentiation of HL-60 cells induced by 1,25 dihydroxyvitamin D3 was found to be separated into two stages, i.e. commitment and promotion. Most of the HL-60 cells were committed to monocyte/macrophage lineage by pretreatment with 1,25 dihydroxyvitamin D3 (5–50 ng/ml) for 18–24 hr. The promotion in the second stage was inducer and lineage independent; treatment with 1.25% DMSO for 2 or 3 days promoted the differentiation of the committed HL-60 cells by 1,25 dihydroxyvitamin D3 into monocyte/macrophage lineage, but not granulocyte lineage.Abbreviations used NEA nonspecific esterase activity - NBT nitroblue tetrazolium - DMSO dimethylsulfoxide - RA retinoic acid - TPA 12-O-tetradecanoylphorbol-13-acetate  相似文献   

7.
UV radiation (UVR) is essential for formation of vitamin D(3), which can be hydroxylated locally in the skin to 1α,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)]. Recent studies implicate 1,25-(OH)(2)D(3) in reduction of UVR-induced DNA damage, particularly thymine dimers. There is evidence that photoprotection occurs through the steroid nongenomic pathway for 1,25-(OH)(2)D(3) action. In the current study, we tested the involvement of the classical vitamin D receptor (VDR) and the endoplasmic reticulum stress protein 57 (ERp57), in the mechanisms of photoprotection. The protective effects of 1,25-(OH)(2)D(3) against thymine dimers were abolished in fibroblasts from patients with hereditary vitamin D-resistant rickets that expressed no VDR protein, indicating that the VDR is essential for photoprotection. Photoprotection remained in hereditary vitamin D-resistant rickets fibroblasts expressing a VDR with a defective DNA-binding domain or a mutation in helix H1 of the classical ligand-binding domain, both defects resulting in a failure to mediate genomic responses, implicating nongenomic responses for photoprotection. Ab099, a neutralizing antibody to ERp57, and ERp57 small interfering RNA completely blocked protection against thymine dimers in normal fibroblasts. Co-IP studies showed that the VDR and ERp57 interact in nonnuclear extracts of fibroblasts. 1,25-(OH)(2)D(3) up-regulated expression of the tumor suppressor p53 in normal fibroblasts. This up-regulation of p53, however, was observed in all mutant fibroblasts, including those with no VDR, and with Ab099; therefore, VDR and ERp57 are not essential for p53 regulation. The data implicate the VDR and ERp57 as critical components for actions of 1,25-(OH)(2)D(3) against DNA damage, but the VDR does not require normal DNA binding or classical ligand binding to mediate photoprotection.  相似文献   

8.
It is well-known that 1α,25-dihydroxyvitamin D(3) and analogs exert anti-proliferative and pro-differentiating effects and these compounds have therefore been proposed to be of potential use as anti-cancer agents. Due to its effects on aromatase gene expression and enzyme activity, 1α,25-dihydroxyvitamin D(3) has been proposed as an interesting substance in breast cancer treatment and prevention. In the present study, we have examined the effects of 1α,25-dihydroxyvitamin D(3) on estrogen and androgen metabolism in adrenocortical NCI-H295R cells, breast cancer MCF-7 cells and prostate cancer LNCaP cells. The NCI-H295R cell line has been proposed as a screening tool to study endocrine disruptors. We therefore studied whether this cell line reacted to 1α,25-dihydroxyvitamin D(3) treatment in the same way as cells from important endocrine target tissues. 1α,25-Dihydroxyvitamin D(3) exerted cell line-specific effects on estrogen and androgen metabolism. In breast cancer MCF-7 cells, aromatase gene expression and estradiol production were decreased, while production of androgens was markedly increased. In NCI-H295R cells, 1α,25-dihydroxyvitamin D(3) stimulated aromatase expression and decreased dihydrotestosterone production. In prostate cancer LNCaP cells, aromatase expression increased after the same treatment, as did production of testosterone and dihydrotestosterone. In summary, our data show that 1α,25-dihydroxyvitamin D(3) exerts tissue-specific effects on estrogen and androgen production and metabolism. This is important knowledge about 1α,25-dihydroxyvitamin D(3) as an interesting substance for further research in the field of breast cancer prevention and treatment. Furthermore, the observed cell line-specific effects are of importance in the discussion about NCI-H295R cells as a model for effects on estrogen and androgen metabolism.  相似文献   

9.
10.
11.
Simultaneous and accurate measurement of circulating vitamin D metabolites is critical to studies of the metabolic regulation of vitamin D and its impact on health and disease. To that end, we have developed a specific liquid chromatography–tandem mass spectrometry (LC–MS/MS) method that permits the quantification of major circulating vitamin D3 metabolites in human plasma. Plasma samples were subjected to a protein precipitation, liquid–liquid extraction, and Diels–Alder derivatization procedure prior to LC–MS/MS analysis. Importantly, in all human plasma samples tested, we identified a significant dihydroxyvitamin D3 peak that could potentially interfere with the determination of 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] concentrations. This interfering metabolite has been identified as 4β,25-dihydroxyvitamin D3 [4β,25(OH)2D3] and was found at concentrations comparable to 1α,25(OH)2D3. Quantification of 1α,25(OH)2D3 in plasma required complete chromatographic separation of 1α,25(OH)2D3 from 4β,25(OH)2D3. An assay incorporating this feature was used to simultaneously determine the plasma concentrations of 25OHD3, 24R,25(OH)2D3, 1α,25(OH)2D3, and 4β,25(OH)2D3 in healthy individuals. The LC–MS/MS method developed and described here could result in considerable improvement in quantifying 1α,25(OH)2D3 as well as monitoring the newly identified circulating metabolite, 4β,25(OH)2D3.  相似文献   

12.
Parathyroid glands express the 25-hydroxyvitamin D(3) 1α-hydroxylase (1αOHase). 1,25-dihydroxyvitamin D(3) (calcitriol) synthesized by extrarenal tissues generally does not enter the circulation, but plays an autocrine/paracrine role specific to the cell type, and is regulated by the needs of that particular cell. While the role of calcitriol produced in the parathyroid glands presumably is to suppress PTH and cell growth, its regulation in this cell type has not been defined. In the present study, we found that regulation of the human parathyroid 1αOHase differs from the renal enzyme in that it is induced by FGF-23 and extracellular calcium. Hyperplastic parathyroid glands from patients with chronic kidney failure normally display a heterogeneous cellularity. We found that the 1αOHase is expressed at much higher levels in oxyphil cells than in chief cells in these patients. Recent findings indicate that oxyphil cell content is increased by treatment with calcium receptor activators (calcimimetics). Here, we demonstrate that the calcimimetic cinacalcet increases the expression of 1αOHase in human parathyroid cultures. Additionally, we found that the 1αOHase in human parathyroid cultures is functionally active, as evidenced by the ability of the enzyme to 1-hydroxylate 25(OH)D(3) in parathyroid monolayers. Calcium, as well as cinacalcet, also induced expression of the degradation enzyme 24-hydroxylase, indicating the presence of a negative feedback system in the parathyroid cells. Therefore, local production of 1αOHase suggests an autocrine/paracrine role in regulating parathyroid function and may mediate, in part, the suppression of PTH by calcium and FGF-23.  相似文献   

13.
Summary An effect of the hormone, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] on hormone secretion by normal rat pituitary cells was investigated in vitro. Based on previous findings using GH4C1 cells, dispersed anterior pituitary cell cultures were prepared and maintained in serum-free conditions for up to 6 d. Under these circumstances, there was no effect of 1,25(OH)2D3 to alter medium or cell-associated levels of thyrotropin (TSH), prolactin (PRL), or growth hormone (GH). Cultures maintained under these conditions had lower medium and cell-associated hormone levels and lesser responses to agonists than cultures maintained in serum-supplemented medium. In the presence of 10% charcoal-treated fetal bovine serum, treatment with 10−8 M 1,25(OH)2D3 for 24 h selectively increased TRH (10−10 to 10−7 M)-induced TSH secretion (P<0.001), with maximal enhancement observed at 10−9 M TSH-releasing hormone (TRH). Enhancement of TSH secretion by 1,25(OH)2D3 was detected after 15 min exposure to TRH. There was no effect on agonist-induced PRL or GH secretion or on cell-associated hormone levels. The effect was evident after 24 h treatment with 1,25(OH)2D3, and decreased thereafter. Several other steroid hormones had no effect on 10−9 M TRH-induced TSH secretion. These data contrast with the effect of 1,25(OH)2D3 in GH cells. They suggest that 1,25(OH)2D3 may act selectively in the normal pituitary to modulate TSH secretion.  相似文献   

14.
多巴胺D3受体(D3R)的神经科学新进展   总被引:6,自引:0,他引:6  
和友  金国章 《生命科学》2005,17(2):170-175
多巴胺(DA)是脑内一种重要的神经递质,通过不同DA受体亚型调控运动功能、认知活动和药物成瘾等生理、病理过程。多巴胺D3受体(D3R)属于D2样受体,但其功能长期不明。近年来,人们对它在神经科学中的意义有了新的认识。首先,D3R的信号通路独特,它被激活后显示细胞增殖效应,但cAMP信号传导途径不明显。其次,D3R基因敲除小鼠研究提示,正常生理状态下D3R仅表现辅助功能:在特定病理条件下,D3R显示出重要的“平衡缓冲作用”,在精神分裂症、帕金森病(PD)治疗中运动障碍副作用LID的发生和毒品复吸等病理过程扮演了重要角色。因此,D3R是一个重要的药物靶标。D3R拮抗剂在精神分裂症治疗中显示了临床前景,D3R激动剂则对PD治疗和毒品复吸防治展示了应用价值。  相似文献   

15.
《植物杂志》2011,(2):94-95
霸王龙 霸王龙又名暴龙,是一种大型的肉食性恐龙,身长约13米,体重约7公吨,生存于白垩纪末期。化石分布于北美洲的美国与加拿大西部。  相似文献   

16.
霸王龙霸王龙又名暴龙,是一种大型的肉食性恐龙,身长约13米,体重约7公吨,生存于白垩纪末期。化石分布于北美洲的美国与加拿大西部。  相似文献   

17.
《植物杂志》2011,(3):94-95
  相似文献   

18.
《植物杂志》2011,(1):94-95
  相似文献   

19.
上海市第十人民医院应用3D打印技术开发隐形矫牙器进行矫正畸牙。近年来,越来越多的青少年饮食过于精细,恒牙在萌出和发育的过程中缺乏富含纤维素食物的“历练”,出现了牙列不齐的问题,要想拥有一口皓齿,只能借助口腔矫正。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号