首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Vitamin B12, reduced by titanium (III) citrate to vitamin B12s, catalyzes the reductive dechlorination of chlorophenols. Reductive dechlorination of pentachlorophenol and of all tetrachlorophenol and trichlorophenol isomers was observed. Reaction of various chlorophenols with vitamin B12 favored reductive dechlorination at positions adjacent to another chlorinated carbon, but chlorines ortho to the hydroxyl group of a phenol were particularly resistant to reductive dechlorination, even if they were also ortho to a chlorine. This resulted in a reductive dechlorination pattern favoring removal of para and meta chlorines, which differs substantially from the pattern exhibited by anaerobic microbial consortia.  相似文献   

2.
Degradation of halogenated aromatic compounds   总被引:5,自引:1,他引:4  
Due to their persistence, haloaromatics are compounds of environmental concern. Aerobically, bacteria degrade these compounds by mono- or dioxygenation of the aromatic ring. The common intermediate of these reactions is (halo)catechol. Halocatechol is cleaved either intradiol (ortho-cleavage) or extradiol (meta-cleavage). In contrast to ortho-cleavage, meta-cleavage of halocatechols yields toxic metabolites. Dehalogenation may occur fortuitously during oxygenation. Specific dehalogenation of aromatic compounds is performed by hydroxylases, in which the halo-substituent is replaced by a hydroxyl group. During reductive dehalogenation, haloaromatic compounds may act as electron-acceptors. Herewith, the halosubstituent is replaced by a hydrogen atom.Abbreviations CBz chlorobenzene - DCBz dichlorobenzene - TrCBz trichlorobenzene - TCBz tetrachlorobenzene - PCBz pentachlorobenzene - HCBz hexachlorobenzene - CBA chlorobenzoic acid - BBA bromobenzoic acid - FBA fluorobenzoic acid - IBA iodobenzoic acid - CP chlorophenol - CA chloroaniline - PCBs polychlorinated biphenyls - CB chlorobiphenyl - 2,4-D 2,4-dichlorophenoxyacetic acid - 2,4,5-T 2,4,5-trichlorophenoxyacetic acid  相似文献   

3.
The distribution of product isomers during the sequential reductive dechlorination of pentachloroaniline (PCA) and pentachlorobenzene (PeCB) was examined based on calculated thermodynamic, chromatographic, and electronic properties and then compared to the product distribution achieved by enrichment cultures. The dechlorination pathway analysis based on free energy considerations matched 78% and 67% of the experimental results for the sequential reductive dechlorination of chlorobenzenes (CBs) and chloroanilines (CAs), respectively. Chromatographic properties of CBs and CAs were able to explain some but not all of the reactions in the observed dechlorination pathways. Correlations between the observed dechlorination pattern and electronic properties of the parent compounds were able to explain most of the formation of the observed products. Experimentally observed sequential reductive dechlorination of CBs and CAs were similar to predicted dechlorination pathways based on the charge differential values calculated for the carbon–chloride bonds. Chlorine atoms were removed from the carbon atom that has the highest charge differential or the second highest charge differential. However, although thermodynamic, electronic as well as chromatographic properties of the CBs and CAs are certainly important factors, they may not be sufficient to completely describe the sequential microbial reductive dechlorination. Enzymatic specificity, as well as other factors (i.e., culture acclimation, environmental factors) should be considered for the interpretation of observed sequential reductive dehalogenation pathways of haloorganic compounds. This work provides the most comprehensive analysis to date of theoretical factors that control the sequential reductive chlorination of two homologous series of single‐ring chloroaromatic species. Biotechnol. Bioeng. 2010; 105: 574–587. © 2009 Wiley Periodicals, Inc.  相似文献   

4.
Microorganisms obtained from a contaminated experimental soil were found to reductively dechlorinate the polychlorobiphenyls (PCBs) of ex-commercial Fenclor 54 and of a synthetic mixture of single congeners, under laboratory anaerobic conditions. The dechlorination rate and extent tended to increase as the chlorination degree of F 54 congeners increased. Several penta-chlorinated congeners temporarily accumulated during the final period of incubation. Dechlorination occurred primarily from the meta and para positions while ortho-sustituted congeners accumulated in the medium during incubation. The dechlorination pattern observed with these unacclimated microorganisms in both PCB mixtures could be only partially compared to patterns reported in the literature. The low product yield deriving from reductive dechlorination of PCBs, i.e. di-and tri-chlorinated biphenyls, and the slow rate of PCB biotransformation can be attributed to a lower dehalogenation capability of artificially contaminated soil microorganisms and, perhaps, also to the inadequacy of the adopted anaerobic medium. Correspondence to: F. Fava  相似文献   

5.
  An anaerobic methanogenic microbial consortium, developed in a granular form, exhibited extensive dechlorination of defined polychlorinated biphenyl (PCB) congeners. A 2,3,4,5,6-pentachlorobiphenyl was dechlorinated to biphenyl via 2,3,4,6-tetrachlorobiphenyl, 2,4,6-trichlorobiphenyl, 2,4-dichlorobi-phenyl and 2-chlorobiphenyl (CB). Removal of chlorine atoms from all three positions of the biphenyl ring, i.e., ortho, meta and para, was observed during this reductive dechlorination process. Biphenyl was identified as one of the end-products of the reductive dechlorination by GC-MS. After 20 weeks, the concentrations of the dechlorination products 2,4,6-CB, 2,4-CB, 2-CB and biphenyl were 8.1, 41.2, 3.0 and 47.8 μM respectively, from an initial 105 μM 2,3,4,5,6-CB. The extent and pattern of the dechlorination were further confirmed by the dechlorination of lightly chlorinated congeners including 2-CB, 3-CB, 4-CB, 2,4-CB and 2,6-CB individually. This study indicates that the dechlorination of 2,3,4,5,6-CB to biphenyl is due to ortho, meta and para dechlorination by this anaerobic microbial consortium. Received: 30 April 1996 / Received revision: 26 July 1996 / Accepted: 5 August 1996  相似文献   

6.
Anaerobic enrichment cultures catalysing the reductive dechlorination of chlorinated benzoic acids were obtained from three fresh-water sediments collected from seven different locations. Sub-cultures from these enrichments specifically removed ortho-substituted chlorine from 2,3,6-, 2,3,5- and 2,4,6-trichlorobenzoic acid, yielding chloride and 2,5-, 3,5-, and 2,4-dichlorobenzoic acids, respectively. These reductive dehalogenations were stimulated by the addition of benzoate and/or volatile organic acids. In one of these enrichments dehalogenation of ortho- and/or para-chlorine substituents was also observed from 2,3-, 2,4-, 2,5-, and 3,4-dichlorobenzoic acid, yielding 3- and 4-chlorobenzoate. Removal of meta-chlorines was not observed in any of the enrichments.  相似文献   

7.
The reductive dechlorination of chlorophenols was studied in three fluidized-bed reactors (FBRs) with respect to enrichment, pathways, complete dechlorination, and overall performance. The methanogenic consortia, developed by previous researchers in our laboratory, have been further enriched by reducing the ratio of substrate to pentachlorophenol (PCP) and increasing the PCP loading. The performance of the consortia was improved, and complete dechlorination at high PCP loading rates was observed, reaching a PCP loading of 1227 µmol/L d with 99% chlorophenol removal. The dechlorination rates in the reactors for chlorophenol (CP) congeners were obtained and were used to evaluate the performance of the three consortia and to quantitatively estimate the fates of these chlorophenols in the reactors. The consortium with the best performance was further investigated in bottle tests by treatment with heat and metabolic inhibitors to examine chlorophenol degradation and to characterize the CP degraders. The degradation of all monochlorophenols was completely inhibited after heat treatment, but the degradation of all other tested chlorophenols was hardly affected by heat treatment, indicating that spore-forming bacteria likely were involved in dechlorination. Addition of sulfate negatively affected CP degradation, but addition of molybdate reduced the effect of sulfate. Tests with 2-bromoethanesulfonic acid and vancomycin indicated that bacteria were responsible for chlorophenol degradation in the consortium.  相似文献   

8.
Microbial degradation of chlorinated phenols   总被引:1,自引:0,他引:1  
Chlorophenols have been introduced into the environment through their use as biocides and as by-products of chlorine bleaching in the pulp and paper industry. Chlorophenols are subject to both anaerobic and aerobic metabolism. Under anaerobic conditions, chlorinated phenols can undergo reductive dechlorination when suitable electron-donating substrates are available. Halorespiring bacteria are known which can use both low and highly chlorinated congeners of chlorophenol as electron acceptors to support growth. Many strains of halorespiring bacteria have the capacity to eliminate ortho-chlorines; however only bacteria from the species Desulfitobacterium hafniense (formerly frappieri) can eliminate para- and meta-chlorines in addition to ortho-chlorines. Once dechlorinated, the phenolic carbon skeletons are completely converted to methane and carbon dioxide by other anaerobic microorganisms in the environment. Under aerobic conditions, both lower and higher chlorinated phenols can serve as sole electron and carbon sources supporting growth. The best studied strains utilizing pentachlorophenol belong to the genera Mycobacterium and Sphingomonas. Two main strategies are used by aerobic bacteria for the degradation of chlorophenols. Lower chlorinated phenols for the most part are initially attacked by monooxygenases yielding chlorocatechols as the first intermediates. On the other hand, polychlorinated phenols are converted to chlorohydroquinones as the initial intermediates. Fungi and some bacteria are additionally known that cometabolize chlorinated phenols.  相似文献   

9.
The fate and persistence of chlorinated organics in the environment have been a concern for the past 50 years. Industrialization and extensive agricultural activities have led to the accumulation of these pollutants in the environment, while their adverse impact on various ecosystems and human health also became evident. This review provides an update on the current knowledge of specialized anaerobic bacteria, namely ‘Dehalococcoides’ spp., which are dedicated to the transformation of various chlorinated organic compounds via reductive dechlorination. Advances in microbiology and molecular techniques shed light into the diversity and functioning of Dehalococcoides spp. in several different locations. Recent genome sequencing projects revealed a large number of genes that are potentially involved in reductive dechlorination. Molecular approaches towards analysis of diversity and expression especially of reductive dehalogenase-encoding genes are providing a growing body of knowledge on biodegradative pathways active in defined pure and mixed cultures as well as directly in the environment. Moreover, several successful field cases of bioremediation strengthen the notion of dedicated degraders such as Dehalococcoides spp. as key players in the restoration of contaminated environments.  相似文献   

10.
Tetrachloroethene reductive dechlorination was studied with cell extracts of a newly isolated, tetrachloroethene-utilizing bacterium, Desulfitobacterium sp. strain PCE-S. Tetrachloroethene dehalogenase mediated the reductive dechlorination of tetrachloroethene and trichloroethene to cis-1,2-dichloroethene with artificial electron donors such as methyl viologen. The chlorinated aromatic compounds tested so far were not reduced. A low-potential electron donor (E 0′ < –0.4 V) was required for tetrachloroethene reduction. The enzyme in its reduced state was inactivated by propyl iodide and reactivated by light, indicating the involvement of a corrinoid in reductive tetrachloroethene dechlorination. Received: 28 April 1997 / Accepted: 11 July 1997  相似文献   

11.
Strain SF3, a gram-negative, anaerobic, motile, short curved rod that grows by coupling the reductive dechlorination of 2-chlorophenol (2-CP) to the oxidation of acetate, was isolated from San Francisco Bay sediment. Strain SF3 grew at concentrations of NaCl ranging from 0.16 to 2.5%, but concentrations of KCl above 0.32% inhibited growth. The isolate used acetate, fumarate, lactate, propionate, pyruvate, alanine, and ethanol as electron donors for growth coupled to reductive dechlorination. Among the halogenated aromatic compounds tested, only the ortho position of chlorophenols was reductively dechlorinated, and additional chlorines at other positions blocked ortho dechlorination. Sulfate, sulfite, thiosulfate, and nitrate were also used as electron acceptors for growth. The optimal temperature for growth was 30°C, and no growth or dechlorination activity was observed at 37°C. Growth by reductive dechlorination was revealed by a growth yield of about 1 g of protein per mol of 2-CP dechlorinated, and about 2.7 g of protein per mole of 2,6-dichlorophenol dechlorinated. The physiological features and 16S ribosomal DNA sequence suggest that the organism is a novel species of the genus Desulfovibrio and which we have designated Desulfovibrio dechloracetivorans. The unusual physiological feature of this strain is that it uses acetate as an electron donor and carbon source for growth with 2-CP but not with sulfate.  相似文献   

12.
Chlorinated benzoates enter the environment through their use as herbicides or as metabolites of other halogenated compounds. Ample evidence is available indicating biodegradation of chlorinated benzoates to CO2 and chloride in the environment under aerobic as well as anaerobic conditions. Under aerobic conditions, lower chlorinated benzoates can serve as sole electron and carbon sources supporting growth of a large list of taxonomically diverse bacterial strains. These bacteria utilize a variety of pathways ranging from those involving an initial degradative attack by dioxygenases to those initiated by hydrolytic dehalogenases. In addition to monochlorinated benzoates, several bacterial strains have been isolated that can grow on dichloro-, and trichloro- isomers of chlorobenzoates. Some aerobic bacteria are capable of cometabolizing chlorinated benzoates with simple primary substrates such as benzoate. Under anaerobic conditions, chlorinated benzoates are subject to reductive dechlorination when suitable electron-donating substrates are available. Several halorespiring bacteria are known which can use chlorobenzoates as electron acceptors to support growth. For example, Desulfomonile tiedjei catalyzes the reductive dechlorination of 3-chlorobenzoate to benzoate. The benzoate skeleton is mineralized by other microorganisms in the anaerobic environment. Various dichloro- and trichlorobenzoates are also known to be dechlorinated in anaerobic sediments.  相似文献   

13.
Defined microbial communities were developed by combining selective enrichment with molecular monitoring of total community genes coding for 16S rRNAs (16S rDNAs) to identify potential polychlorinated biphenyl (PCB)-dechlorinating anaerobes that ortho dechlorinate 2,3,5,6-tetrachlorobiphenyl. In enrichment cultures that contained a defined estuarine medium, three fatty acids, and sterile sediment, a Clostridium sp. was predominant in the absence of added PCB, but undescribed species in the δ subgroup of the class Proteobacteria, the low-G+C gram-positive subgroup, the Thermotogales subgroup, and a single species with sequence similarity to the deeply branching species Dehalococcoides ethenogenes were more predominant during active dechlorination of the PCB. Species with high sequence similarities to Methanomicrobiales and Methanosarcinales archaeal subgroups were predominant in both dechlorinating and nondechlorinating enrichment cultures. Deletion of sediment from PCB-dechlorinating enrichment cultures reduced the rate of dechlorination and the diversity of the community. Substitution of sodium acetate for the mixture of three fatty acids increased the rate of dechlorination, further reduced the community diversity, and caused a shift in the predominant species that included restriction fragment length polymorphism patterns not previously detected. Although PCB-dechlorinating cultures were methanogenic, inhibition of methanogenesis and elimination of the archaeal community by addition of bromoethanesulfonic acid only slightly inhibited dechlorination, indicating that the archaea were not required for ortho dechlorination of the congener. Deletion of Clostridium spp. from the community profile by addition of vancomycin only slightly reduced dechlorination. However, addition of sodium molybdate, an inhibitor of sulfate reduction, inhibited dechlorination and deleted selected species from the community profiles of the class Bacteria. With the exception of one 16S rDNA sequence that had the highest sequence similarity to the obligate perchloroethylene-dechlorinating Dehalococcoides, the 16S rDNA sequences associated with PCB ortho dechlorination had high sequence similarities to the δ, low-G+C gram-positive, and Thermotogales subgroups, which all include sulfur-, sulfate-, and/or iron(III)-respiring bacterial species.The extensive industrial use of polychlorinated biphenyls (PCBs) during the 20th century has resulted in the release of an estimated several million pounds of PCBs into the environment (2). Due to the hydrophobicity and chemical stability of these compounds, PCBs ultimately accumulate in subsurface anaerobic sediments, where reductive dechlorination by anaerobic microorganisms is proposed to be an essential step in PCB degradation and detoxification (6). Although anaerobic reductive dechlorination has been documented in the environment and in the laboratory, attempts to identify and isolate anaerobic PCB-dechlorinating microbes by classical enrichment and isolation techniques have been unsuccessful (for a review, see reference 2). Isolation of anaerobic PCB-dechlorinating microbes has been hindered in part by the inability to maintain and sequentially transfer dechlorinating consortia in defined medium. May et al. (24) were the first to demonstrate that single colonies could be obtained by plating highly enriched PCB-dechlorinating enrichment cultures on agar-solidified media. Although two of the colonies exhibited para dechlorination activity when transferred back to liquid enrichment medium, the colonies contained a mixed community of microorganisms and dechlorination required the addition of sediment to the medium. More recently, highly enriched PCB-ortho-dechlorinating enrichment cultures were developed from Baltimore Harbor sediments in minimal media that contained sediments and a single congener (3) or Aroclor 1260 (37). These were the first confirmed reports of sustained ortho dechlorination of PCBs throughout sequential transfers in medium with estuarine sediments. Finally, Cutter et al. demonstrated that a consortium of PCB-ortho-dechlorinating anaerobes from Baltimore Harbor could be sequentially transferred and maintained in minimal medium without the addition of sterile sediment (9). With the ability to maintain PCB dechlorination in a completely defined medium, highly enriched PCB-dechlorinating consortia could be developed by sequential transfers in medium that contained the minimal growth requirements for dechlorinating species.The current study identifies putative PCB-dechlorinating anaerobes in ortho-dechlorinating enrichment cultures by a comprehensive approach that combines traditional selective enrichment techniques with molecular monitoring (SEMM). Microbial consortia enriched for PCB ortho dechlorination in minimal medium were analyzed by comparative sequence analysis of genes coding for 16S rRNA (16S rDNA) amplified from total community DNAs. Protocols were developed for chromosomal DNA extraction from sediment, 16S rDNA amplification by PCR, cloning of partial 16S rDNA PCR fragments, screening by restriction fragment length polymorphism (RFLP) analysis, and DNA sequencing for comparative sequence analysis. By utilizing these techniques, shifts in the microbial community were monitored as the cultures were further enriched for PCB-dechlorinating anaerobes by elimination of undefined medium components (i.e., sediment), changes in carbon source, and addition of selective physiological inhibitors. The results presented herein demonstrate the applicability of the SEMM approach for the selection and monitoring of highly defined PCB-dechlorinating microbial consortia.  相似文献   

14.
The effect of yeast extract and its less complex substituents on the rate of aerobic dechlorination of 2-chlorobenzoic acid (2-ClBzOH) and 2,5-dichlorobenzoic acid (2,5-Cl2BzOH) by Pseudomonas sp. CPE2 strain, and of 3-chlorobenzoic acid (3-ClBzOH), 4-chlorobenzoic acid (4-ClBzOH) and 3,4-dichlorobenzoic acid (3,4-Cl2BzOH) by Alcaligenes sp. CPE3 strain were investigated. Yeast extract at 50 mg/l increased the average dechlorination rate of 200 mg/l of 4-ClBzOH, 2,5-Cl2BzOH, 3,4-Cl2BzOH, 3-ClBzOH and 2-ClBzOH by about 75%, 70%, 55%, 7%, and 1%, respectively. However, in the presence of yeast extract the specific dechlorination activity of CPE2 and CPE3 cells (per unit biomass) was always lower than without yeast extract, although it increased significantly during the exponential growth phase. When a mixed vitamin solution or a mixed trace element solution was used instead of yeast extract the rate of 4-ClBzOH dechlorination increased by 30%–35%, whereas the rate of 2,5-Cl2BzOH and 3,4-Cl2BzOH dechlorination increased by only 2%–10%. The presence of vitamins or trace elements also resulted in a specific dechlorination activity that was generally higher than that observed for the same cells grown solely on chlorobenzoic acid. The results of this work indicate that yeast extract, a complex mixture of readily oxidizable carbon sources, vitamins, and trace elements, enhances the growth and the dechlorination activity of CPE2 and CPE3 cells, thus resulting in an overall increase in the rate of chlorobenzoic acid utilization and dechlorination.  相似文献   

15.
Reductive dechlorination of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) was investigated in anaerobic sediments by non-adapted microorganisms and by microorganisms adapted to either 2,4- or 3,4-dichlorophenol (DCP). The rate of dechlorination of 2,4-D was increased by adaptation of sediment microorganisms to 2,4-DCP while dechlorination by sediment microorganisms adapted to 3,4-DCP displayed a lag phase similar to non-adapted sediment slurries. Both 2,4- and 3,4-DCP-adapted microorganisms produced 4-chlorophenoxyacetic acid by ortho-chlorine removal. Lag phases prior to dechlorination of the initial addition of 2,4,5-T by DCP-adapted sediment microorganisms were comparable to those from non-adapted sediment slurries. However, the rates of dechlorination increased upon subsequent additions of 2,4,5-T. Biodegradation of 2,4,5-T by sediment microorganisms adapted to 2,4- and/ or 3,4-DCP produced 2,5-D as the initial intermediate followed by 3-chlorophenol and phenol indicating a para > ortho > meta order of dechlorination. Dechlorination of 2,4,5-T, by either adapted or non-adapted sediment microorganisms, progressed without detection of 2,4,5-trichlorophenol as an intermediate.  相似文献   

16.
The specific dechlorination pathways for Aroclor 1260 were determined in Baltimore Harbor sediment microcosms developed with the 11 most predominant congeners from this commercial mixture and their resulting dechlorination intermediates. Most of the polychlorinated biphenyl (PCB) congeners were dechlorinated in the meta position, and the major products were tetrachlorobiphenyls with unflanked chlorines. Using PCR primers specific for the 16S rRNA genes of known PCB-dehalogenating bacteria, we detected three phylotypes within the microbial community that had the capability to dechlorinate PCB congeners present in Aroclor 1260 and identified their selective activities. Phylotype DEH10, which has a high level of sequence identity to Dehalococcoides spp., removed the double-flanked chlorine in 234-substituted congeners and exhibited a preference for para-flanked meta-chlorines when no double-flanked chlorines were available. Phylotype SF1 had similarity to the o-17/DF-1 group of PCB-dechlorinating bacteria. Phylotype SF1 dechlorinated all of the 2345-substituted congeners, mostly in the double-flanked meta position and 2356-, 236-, and 235-substituted congeners in the ortho-flanked meta position, with a few exceptions. A phylotype with 100% sequence identity to PCB-dechlorinating bacterium o-17 was responsible for an ortho and a double-flanked meta dechlorination reaction. Most of the dechlorination pathways supported the growth of all three phylotypes based on competitive PCR enumeration assays, which indicates that PCB-impacted environments have the potential to sustain populations of these PCB-dechlorinating microorganisms. The results demonstrate that the variation in dechlorination patterns of congener mixtures typically observed at different PCB impacted sites can potentially be mediated by the synergistic activities of relatively few dechlorinating species.  相似文献   

17.
In chloroethene-contaminated sites undergoing in situ bioremediation, groundwater acidification is a frequent problem in the source zone, and buffering strategies have to be implemented to maintain the pH in the neutral range. An alternative to conventional soluble buffers is silicate mineral particles as a long-term source of alkalinity. In previous studies, the buffering potentials of these minerals have been evaluated based on abiotic dissolution tests and geochemical modeling. In the present study, the buffering potentials of four silicate minerals (andradite, diopside, fayalite, and forsterite) were tested in batch cultures amended with tetrachloroethene (PCE) and inoculated with different organohalide-respiring consortia. Another objective of this study was to determine the influence of pH on the different steps of PCE dechlorination. The consortia showed significant differences in sensitivities toward acidic pH for the different dechlorination steps. Molecular analysis indicated that Dehalococcoides spp. that were present in all consortia were the most pH-sensitive organohalide-respiring guild members compared to Sulfurospirillum spp. and Dehalobacter spp. In batch cultures with silicate mineral particles as pH-buffering agents, all four minerals tested were able to maintain the pH in the appropriate range for reductive dechlorination of chloroethenes. However, complete dechlorination to ethene was observed only with forsterite, diopside, and fayalite. Dissolution of andradite increased the redox potential and did not allow dechlorination. With forsterite, diopside, and fayalite, dechlorination to ethene was observed but at much lower rates for the last two dechlorination steps than with the positive control. This indicated an inhibition effect of silicate minerals and/or their dissolution products on reductive dechlorination of cis-dichloroethene and vinyl chloride. Hence, despite the proven pH-buffering potential of silicate minerals, compatibility with the bacterial community involved in in situ bioremediation has to be carefully evaluated prior to their use for pH control at a specific site.  相似文献   

18.
Bacterial cometabolic degradation of chlorinated paraffins   总被引:1,自引:0,他引:1  
Summary Cometabolic dechlorination of chlorinated paraffins was demonstrated in the presence of n-hexadecane by bacterial strains (HK-3, HK-6, HK-8, and HK-10) isolated from soil samples.Eleven per cent of chlorine of chlorinated paraffin-150 (CP-150) was released by strain HK-3. The mixed culture of strain HK-3, catalyzing the dechlorination of terminal chlorine of chloroalkane, and strain H15-4, capable of releasing the chlorine from 2-chlorinated fatty acids, dechlorinated CP-150 up to 13%. The mixed culture of the four strains (HK-3, HK-6, HK-8, and HK-10) performed the dechlorination of CP-150 by cometabolism in a jar fermentor pH at 7.0. The amount of chloride released from the chlorinated paraffins tested was in the range of 15–57%.The activated sludge acclimatized to n-hexadecane for 60 days showed a little dechlorination activity to CP-150.  相似文献   

19.
The effects of different organic substrates on the abilities of anaerobic sediment enrichments to reductively dechlorinate polychlorinated biphenyls (PCBs) were studied. Sediments collected from a site previously contaminated with PCBs were dosed with additional PCBs (Aroclor 1242; approximately 300 ppm [300 μg/g], sediment dry weight) and incubated anaerobically with acetate, acetone, methanol, or glucose. The pattern of dechlorination was similar for each substrate-fed batch; however, the extents and rates of dechlorination were different. Significant dechlorination over time was observed, with the relative rates and extents of dechlorination being greatest for methanol-, glucose-, and acetone-fed batches and least for acetate-fed batches. Dechlorination occurred primarily on the meta- and para- positions of the highly chlorinated congeners, resulting in the accumulation of less-chlorinated, primarily ortho-substituted products. No significant dechlorination was observed in incubation batches receiving no additional organic substrate, even though identical inorganic nutrients were added to all incubation batches. In addition, dechlorination was not observed in autoclaved controls that received substrate and nutrients.  相似文献   

20.
 Reductive dechlorination of carbon tetra-chloride (CCl4) by anaerobic bacterial communities from anaerobic digester sludge with the amendment of low concentrations of electron donors and microorganisms was undertaken to evaluate the influence of electron donors and microbial concentration on the rate of dechlorination of CCl4. Humic acid, acetate, and glucose were selected to examine the feasibility of the electron donor with respect to the remediation of a contaminated subsurface. The addition of an electron donor and microorganisms significantly enhanced the dechlorination rate of carbon tetrachloride. The addition of an electron donor increased the cell numbers of anaerobic consortia, thereby increasing the rate of dechlorination. Glucose was a better electron donor than acetate and humic acid under reducing environments. The pseudo-first-order degradation rate constants of CCl4 ranged from 0.0057 day-1 to 0.135 day-1, depending on the conditions of the electron donor and biomass supplemented. Furthermore, the addition of the electron donor in the batches amended with 0.56 mg volatile suspended solids (VSS)/l biomass had a higher enhanced efficiency than those with 1.7 mg VSS/l biomass. These results suggest that there is a potential for stimulating the dechlorinating capability of anaerobic consortia to remedy the chlorinated hydrocarbons in the oligotrophic environment if the conditions of the supplementing electron donor are properly selected. Received: 14 August 1995/Received last revision: 15 March 1996/Accepted: 15 April 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号