首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Kar3 protein (Kar3p), a protein related to kinesin heavy chain, and the Cik1 protein (Cik1p) appear to participate in the same cellular processes in S. cerevisiae. Phenotypic analysis of mutants indicates that both CIK1 and KAR3 participate in spindle formation and karyogamy. In addition, the expression of both genes is induced by pheromone treatment. In vegetatively growing cells, both Cik1::beta-gal and Kar3::beta-gal fusions localize to the spindle pole body (SPB), and after pheromone treatment both fusion proteins localize to the spindle pole body and cytoplasmic microtubules. The dependence of Cik1p and Kar3p localization upon one another was investigated by indirect immunofluorescence of fusion proteins in pheromone-treated cells. The Cik1p::beta-gal fusion does not localize to the SPB or microtubules in a kar3 delta strain, and the Kar3p::beta-gal fusion protein does not localize to microtubule-associated structures in a cik1 delta strain. Thus, these proteins appear to be interdependent for localization to the SPB and microtubules. Analysis by both the two-hybrid system and co- immunoprecipitation experiments indicates that Cik1p and kar3p interact, suggesting that they are part of the same protein complex. These data indicate that interaction between a putative kinesin heavy chain-related protein and another protein can determine the localization of motor activity and thereby affect the functional specificity of the motor complex.  相似文献   

2.
3.
The yeast KAR1 gene is essential for mitotic growth and important for nuclear fusion. Mutations in KAR1 prevent duplication of the spindle pole body (SPB), and affect functions associated with both the nuclear and cytoplasmic microtubules. The localization of hybrid Kar1-lacZ proteins, described elsewhere (Vallen, E. A., T. Y. Scherson, T. Roberts, K. van Zee, and M. D. Rose. 1992. Cell. In press), suggest that the protein is associated with the SPB. In this paper, we report a deletion analysis demonstrating that the mitotic and karyogamy functions of KAR1 are separate and independent, residing in discrete functional domains. One region, here shown to be essential for mitosis, coincided with a part of the protein that is both necessary and sufficient to target Karl-lacZ hybrid proteins to the SPB (Vallen, E. A., T. Y. Scherson, T. Roberts, K. van Zee, and M. D. Rose. 1992. Cell. In press). Complementation testing demonstrated that deletions in this interval did not affect nuclear fusion. A second region, required only for karyogamy, was necessary for the localization of a Kar3-lacZ hybrid protein to the SPB. These data suggest a model for the roles of Kar1p and Kar3p, a kinesin-like protein, in nuclear fusion. Finally, a third region of KAR1 was found to be important for both mitosis and karyogamy. This domain included the hydrophobic carboxy terminus and is sufficient to target a lacZ-Kar1 hybrid protein to the nuclear envelope (Vallen E. A., T. Y. Scherson, T. Roberts, K. van Zee, and M. D. Rose. 1992. Cell. In press). Altogether, the essential mitotic regions of KAR1 comprised 20% of the coding sequence. We propose a model for Kar1p in which the protein is composed of several protein-binding domains tethered to the nuclear envelope via its hydrophobic tail.  相似文献   

4.
During mating of Saccharomyces cerevisiae, two nuclei fuse to produce a single diploid nucleus. Two genes, KAR7 and KAR8, were previously identified by mutations that cause defects in nuclear membrane fusion. KAR7 is allelic to SEC71, a gene involved in protein translocation into the endoplasmic reticulum. Two other translocation mutants, sec63-1 and sec72Delta, also exhibited moderate karyogamy defects. Membranes from kar7/sec71Delta and sec72Delta, but not sec63-1, exhibited reduced membrane fusion in vitro, but only at elevated temperatures. Genetic interactions between kar7 and kar5 mutations were suggestive of protein-protein interactions. Moreover, in sec71 mutants, Kar5p was absent from the SPB and was not detected by Western blot or immunoprecipitation of pulse-labeled protein. KAR8 is allelic to JEMI, encoding an endoplasmic reticulum resident DnaJ protein required for nuclear fusion. Overexpression of KAR8/JEM1 (but not SEC63) strongly suppressed the mating defect of kar2-1, suggesting that Kar2p interacts with Kar8/Jem1p for nuclear fusion. Electron microscopy analysis of kar8 mutant zygotes revealed a nuclear fusion defect different from kar2, kar5, and kar7/sec71 mutants. Analysis of double mutants suggested that Kar5p acts before Kar8/Jem1p. We propose the existence of a nuclear envelope fusion chaperone complex in which Kar2p, Kar5p, and Kar8/Jem1p are key components and Sec71p and Sec72p play auxiliary roles.  相似文献   

5.
KAR1 has been identified as an essential gene which is involved in karyogamy of mating yeast cells and in spindle pole body duplication of mitotic cells (Rose, M. D., and G. R. Fink. 1987. Cell. 48:1047-1060). We investigated the cell cycle-dependent localization of the Kar1 protein (Kar1p) and its interaction with other SPB components. Kar1p is associated with the spindle pole body during the entire cell cycle of yeast. Immunoelectron microscopic studies with anti-Kar1p antibodies or with the monoclonal antibody 12CA5 using an epitope-tagged, functional Kar1p revealed that Kar1p is associated with the half bridge or the bridge of the spindle pole body. Cdc31p, a Ca(2+)-binding protein, was previously identified as the first component of the half bridge of the spindle pole body (Spang, A., I. Courtney, U. Fackler, M. Matzner, and E. Schiebel. 1993. J. Cell Biol. 123:405-416). Using an in vitro assay we demonstrate that Cdc31p specifically interacts with a short sequence within the carboxyl terminal half of Kar1p. The potential Cdc31p- binding sequence of Kar1p contains three acidic amino acids which are not found in calmodulin-binding peptides, explaining the different substrate specificities of Cdc31p and calmodulin. Cdc31p was also able to bind to the carboxy terminus of Nuflp/Spc110p, another component of the SPB (Kilmartin, J. V., S. L. Dyos, D. Kershaw, and J. T. Finch. 1993. J. Cell Biol. 123:1175-1184). The association of Kar1p with the spindle pole body was independent of Cdc31p. Cdc31p, on the other hand, was not associated with SPBs of kar1 cells.  相似文献   

6.
The Saccharomyces cerevisiae genes KAR1 and CDC31 are required for the initial stages of spindle pole body (SPB) duplication in yeast. The Cdc31 protein is most related to caltractin/centrin, a calcium-binding protein present in microtubule organizing centers in many organisms. Because of a variety of genetic interactions between CDC31 and KAR1 (Vallen, E. A., W. Ho. M. Winey, and M. D. Rose. 1994. Genetics. In press), we wanted to determine whether Cdc31p and Kar1p physically interact. Cdc31p was expressed and purified from Escherichia coli and active for binding calcium. Using a protein blotting technique, Cdc31p bound to Kar1p in vitro via an essential domain in Kar1p required for SPB duplication (Vallen, E. A., M. A. Hiller, T. Y. Scherson, and M. D. Rose. 1992a. J. Cell Biol. 117:1277-1287). By immunofluorescence microscopy, we determined that the interaction also occurs in vivo. Cdc31p was localized to the SPB in wild-type cells but was mislocalized in a kar1 mutant strain. In a kar1 mutant containing a dominant CDC31 suppressor, Cdc31p was again localized to the SPB. Furthermore, the localization of Cdc31p to the SPB was affected by the overexpression of Kar1p-beta-galactosidase hybrids. Based on these data, we propose that the essential function of Kar1p is to localize Cdc31p to the SPB, and that this interaction is normally required for SPB duplication.  相似文献   

7.
Accurate positioning of the mitotic spindle in Saccharomyces cerevisiae is coordinated with the asymmetry of the two poles and requires the microtubule-to-actin linker Kar9p. The asymmetric localization of Kar9p to one spindle pole body (SPB) and microtubule (MT) plus ends requires Cdc28p. Here, we show that the CLIP-170 homologue Bik1p binds directly to Kar9p. In the absence of Bik1p, Kar9p localization is not restricted to the daughter-bound SPB, but it is instead found on both SPBs. Kar9p is hypophosphorylated in bik1delta mutants, and Bik1p binds to both phosphorylated and unphosphorylated isoforms of Kar9p. Furthermore, the two-hybrid interaction between full-length KAR9 and the cyclin CLB5 requires BIK1. The binding site of Clb5p on Kar9p maps to a short region within the basic domain of Kar9p that contains a conserved phosphorylation site, serine 496. Consistent with this, Kar9p is found on both SPBs in clb5delta mutants at a frequency comparable with that seen in kar9-S496A strains. Together, these data suggest that Bik1p promotes the phosphorylation of Kar9p on serine 496, which affects its asymmetric localization to one SPB and associated cytoplasmic MTs. These findings provide further insight into a mechanism for directing centrosomal inheritance.  相似文献   

8.
9.
During mitosis in the yeast Saccharomyces cerevisiae, Kar9p directs one spindle pole body (SPB) toward the incipient daughter cell by linking the associated set of cytoplasmic microtubules (cMTs) to the polarized actin network on the bud cortex. The asymmetric localization of Kar9p to one SPB and attached cMTs is dependent on its interactions with microtubule-associated proteins and is regulated by the yeast Cdk1 Cdc28p. Two phosphorylation sites in Kar9p were previously identified. Here, we propose that the two sites are likely to govern Kar9p function through separate mechanisms, each involving a distinct cyclin. In the first mechanism, phosphorylation at serine 496 recruits Kar9p to one SPB. A phosphomimetic mutation at serine 496 bypasses the requirement of BIK1 and CLB5 in generating Kar9p asymmetry. In the second mechanism, Clb4p may target serine 197 of Kar9p for phosphorylation. This modification is required for Kar9p to direct cMTs to the bud. Two-hybrid analysis suggests that this phosphorylation may attenuate the interaction between Kar9p and the XMAP215-homologue Stu2p. We propose that phosphorylation at serine 197 regulates the release of Kar9p from Stu2p at the SPB, either to clear it from the mother-SPB or to allow it to travel to the plus end.  相似文献   

10.
Ivanovska I  Rose MD 《Genetics》2001,157(2):503-518
Centrin/Cdc31p is a Ca2+-binding protein related to calmodulin found in the MTOC of diverse organisms. In yeast, Cdc31p localizes to the SPB where it interacts with Kar1p and is required for SPB duplication. Recent findings suggest that centrin also functions elsewhere in the cell. To dissect the functions of Cdc31p, we generated cdc31 mutations chosen only for temperature sensitivity, but otherwise unbiased as to phenotype. Three phenotypes of the cdc31 mutants, temperature sensitivity, G2/M arrest, and cell lysis, were not well correlated, indicating that the mutations may differentially affect Cdc31p's interactions with other proteins. Alleles near the C-terminal region exhibited high G2/M arrest and genetic interactions with kar1-Delta17, suggesting that this region modulates an SPB-related function. Alleles causing high lysis and reduced Kic1p kinase activity mapped to the middle of the gene, suggesting disruption of a KIC1-like function and defects in activating Kic1p. A third region conferred temperature sensitivity without affecting cell lysis or G2/M arrest, suggesting that it defines a third function. Mutations in the C-terminal region were also defective for interaction with Kic1p. Mapping the alleles onto a predicted structure of Cdc31p, we have identified surfaces likely to be important for interacting with both Kar1p and Kic1p.  相似文献   

11.
Herpes simplex virus (HSV) virions contain one or more factors that trigger rapid shutoff of host protein synthesis and accelerated decay of cellular and viral mRNAs in infected cells. HSV isolates bearing mutations at the virion host shutoff (vhs) locus (gene UL41) are defective for both processes, indicating that the vhs protein is required; however, it is not clear whether the role of vhs in shutoff is direct or indirect and if other virion components are also necessary. We therefore used a transient-cotransfection assay to determine if the vhs protein displays activity in the absence of other viral gene products. We found that a vhs expression vector strongly suppressed expression of a cotransfected lacZ reporter gene and that this effect was eliminated by the vhs1 point mutation that abolishes virion-induced host shutoff during HSV infection. Further evidence for the biological relevance of the transfection assay came from the demonstration that five vhs in-frame linker insertion mutations yielded concordant results when assayed in cotransfected cells and following transfer into the viral genome: three mutations eliminated activity in both assays, while two had no effect. On the basis of these results, we conclude that the vhs protein can trigger host shutoff in the absence of other HSV proteins. The cotransfection assay was used to rapidly assess the activities of a panel of linker insertion mutants spanning the vhs polypeptide. All mutations that mapped to regions conserved among the vhs homologs of alphaherpesvirus inactivated function; in contrast, four of five mutations that mapped to regions that are absent from several vhs homologs had no effect. These results further support the biological relevance of the transfection assay and begin to delineate functional domains of the vhs polypeptide.  相似文献   

12.
13.
14.
The MPS2 (monopolar spindle two) gene is one of several genes required for the proper execution of spindle pole body (SPB) duplication in the budding yeast Saccharomyces cerevisiae (). We report here that the MPS2 gene encodes an essential 44-kDa protein with two putative coiled-coil regions and a hydrophobic sequence. Although MPS2 is required for normal mitotic growth, some null strains can survive; these survivors exhibit slow growth and abnormal ploidy. The MPS2 protein was tagged with nine copies of the myc epitope, and biochemical fractionation experiments show that it is an integral membrane protein. Visualization of a green fluorescent protein (GFP) Mps2p fusion protein in living cells and indirect immunofluorescence microscopy of 9xmyc-Mps2p revealed a perinuclear localization with one or two brighter foci of staining corresponding to the SPB. Additionally, immunoelectron microscopy shows that GFP-Mps2p localizes to the SPB. Our analysis suggests that Mps2p is required as a component of the SPB for insertion of the nascent SPB into the nuclear envelope.  相似文献   

15.
16.
KAR5 is required for membrane fusion during karyogamy, the process of nuclear fusion during yeast mating. To investigate the molecular mechanism of nuclear fusion, we cloned and characterized the KAR5 gene and its product. KAR5 is a nonessential gene, and deletion mutations produce a bilateral defect in the homotypic fusion of yeast nuclei. KAR5 encodes a novel protein that shares similarity with a protein in Schizosaccharomyces pombe that may play a similar role in nuclear fusion. Kar5p is induced as part of the pheromone response pathway, suggesting that this protein uniquely plays a specific role during mating in nuclear membrane fusion. Kar5p is a membrane protein with its soluble domain entirely contained within the lumen of the endoplasmic reticulum. In pheromone-treated cells, Kar5p was localized to the vicinity of the spindle pole body, the initial site of fusion between haploid nuclei during karyogamy. We propose that Kar5p is required for the completion of nuclear membrane fusion and may play a role in the organization of the membrane fusion complex.  相似文献   

17.
酵母PHO2与PHO4蛋白的激活活性的分析及两者的相互作用   总被引:3,自引:3,他引:0  
PHO2与PHO4是酵母PHO5基因的两个正调控因子,本文发现,PHO2与酵母转录因子GAL4的DNA结合功能域融合后就能激活报道基因lacZ的表达,其激活力受高低磷影响,表明PHO2蛋白上存在酸性转录激活区。PHO2蛋白上酸性氨基酸丰富的287-326肽段并非PHO2的激活区。在PHO2蛋白上230位Ser处于磷酸化状态2PHO2才有激活作用,表明了这一磷酸化位点可能与PHO2的转录激活能力有关  相似文献   

18.
A bifunctional protein consisting of MutS, a mismatch binding protein and a beta-galactosidase reporter domain has been constructed. The fusion of beta-galactosidase to the MutS C-terminus was obtained by cloning the Escherichia coli lacZ gene encoding beta-galactosidase into a plasmid vector carrying the Thermus thermophilus mutS gene. Milligram amounts of this huge chimeric protein (217 kDa monomer) were purified from 1l of overexpressing E. coli cells using metal-chelate affinity chromatography. The mismatch binding properties of the fusion protein were confirmed by DNA mobility shift assay in polyacrylamide gels. Binding to biotinylated mismatched DNA immobilized on streptavidin microplates followed by colorimetric reaction with X-gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside), demonstrated both mismatch recognition and beta-galactosidase activity of the chimeric protein. The activity of beta-galactosidase domain of the fusion was similar to that of the native enzyme. A colorimetric assay for beta-galactosidase activity using X-Gal supplemented with NBT (nitro blue tetrazolium) allowed detection of 50 and 500 fmol of the chimeric protein with naked eye in 45 microl volumes after 120 and 15 min incubation, respectively.  相似文献   

19.
Asymmetric mitotic segregation of the yeast spindle pole body.   总被引:33,自引:0,他引:33  
The yeast KAR1 gene is required for spindle pole body (SPB) duplication and nuclear fusion. We determine here that KAR1-beta-galactosidase hybrid proteins localize to the outer face of the SPB. Remarkably, after SPB duplication, the hybrid protein was found associated with only one of the two SPBs, usually the one that enters the bud. Using an ndc1 mutant, which forms a defective SPB at the nonpermissive temperature, we found that the hybrid was exclusively associated with the "new" SPB. Two regions of KAR1 contribute to its localization; an internal 70 residue region was necessary and sufficient to localize hybrids to the SPB, and the hydrophobic carboxyl terminus localized proteins to the nuclear envelope. The localization domains correspond to two functional domains required for SPB duplication. We suggest that KAR1 is anchored to the nuclear envelope and interacts with at least one other SPB component during the cell cycle.  相似文献   

20.
Nuclear membrane fusion is the last step in the mating pathway of the yeast Saccharomyces cerevisiae. We adapted a bioinformatics approach to identify putative pheromone-induced membrane proteins potentially required for nuclear membrane fusion. One protein, Prm3p, was found to be required for nuclear membrane fusion; disruption of PRM3 caused a strong bilateral defect, in which nuclear congression was completed but fusion did not occur. Prm3p was localized to the nuclear envelope in pheromone-responding cells, with significant colocalization with the spindle pole body in zygotes. A previous report, using a truncated protein, claimed that Prm3p is localized to the inner nuclear envelope. Based on biochemistry, immunoelectron microscopy and live cell microscopy, we find that functional Prm3p is a peripheral membrane protein exposed on the cytoplasmic face of the outer nuclear envelope. In support of this, mutations in a putative nuclear localization sequence had no effect on full-length protein function or localization. In contrast, point mutations and deletions in the highly conserved hydrophobic carboxy-terminal domain disrupted both protein function and localization. Genetic analysis, colocalization, and biochemical experiments indicate that Prm3p interacts directly with Kar5p, suggesting that nuclear membrane fusion is mediated by a protein complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号